

S. No.	CONTENTS	Page
1.	Classification	1
2.	Monohalides	1
3.	Dihalides	4
4.	Trihalides	7
5 .	Grignard reagent	11
6.	Haloarenes	12
7.	Exercise-I (Conceptual Questions)	14
8.	Exercise-II (Previous Years Questions)	17
9.	Exercise-III (Analytical Questions)	19
10.	Exercise-IV (Assertion & Reason)	20

E

NEET SYLLABUS

Haloalkanes: Nomenclature, nature of C-X bond, physical and chemical properties, **Haloarenes:** Nature of C-X bond, substitution reactions (directive influence of halogen for monosubstituted compounds only), Uses and environmental effect of dichloromethane, trichloromethane, lodoform, freons, DDT

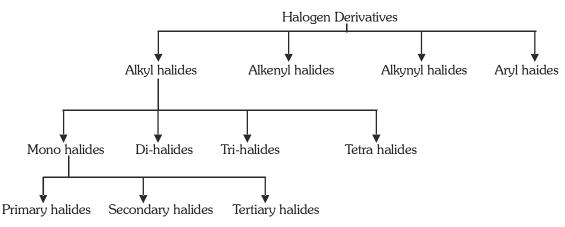
OBJECTIVES

After studying this unit, we will be able to:

- Name haloalkanes and haloarenes according to the IUPAC system of nomenclature from their given structures;
- Describe the reactions involved in the preparation of haloalkanes and haloarenes and understand various reactions that they undergo;
- Correlate the structures of haloalkanes and haloarenes with various types of reactions;
- Use stereochemistry as a tool for understanding the reaction mechanism;
- Appreciate the applications of organo-metallic compounds;
- Highlight the environmental effects of polyhalogen compounds

"Failure will never overtake me if my determination to succeed is strong enough"

A.P.J. Abdul Kalam


HALOGEN DERIVATIVES

1.0 HALOGEN DERIVATIVES

Compounds derived from hydrocarbons by replacement of one or more H-atoms by corresponding no. of halogen atoms are known as halogen derivatives.

2.0 CLASSIFICATION

On the basis of nature of hydrocarbon from which they are obtained, halogen derivatives can be classified as:

3.0 MONOHALIDES:

3.1 Genreal Methods of Preparation of Monohalides

(1) By direct halogenation of alkanes:

$$R-H + Cl_2 \xrightarrow{U.V.light} R-Cl + HCl$$
 (excess)

(2) By the addition of H-X on alkenes:

Isopropyl halide

- (3) By Alcohols:
 - (a) By the action of hydrogen halides:

$$R-CH_2-OH \xrightarrow{H-X} RCH_2-X$$

(b) By the action of phosphorous halides:

 PBr_3 and PI_3 are less stable, thus for bromides ($P + Br_2$) and for iodides ($P + I_2$) mixture is used.

(c) By reaction with thionyl chloride (Darzen's procedure):

$$R - OH + SOCl_2 \xrightarrow{Pyridine} R - Cl + SO_2 + HCl$$

One mole One mole

Because of less stability of SOBr₂ and SOI₂, R—Br and RI can not be obtained by this method.

(4) Borodine - Hunsdicker's reaction:

R—COOAg +
$$X_2 \xrightarrow{CCl_4 \atop \Delta}$$
 R—X + CO_2 + AgX Silver salt of (Cl_2 or Br_2) a fatty acid

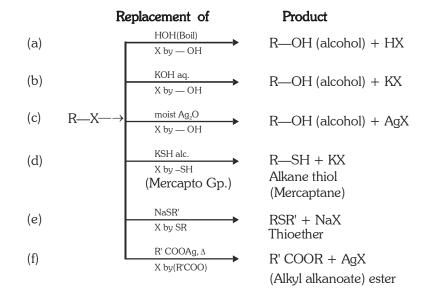
(5) By halide exchange:

R-Cl or R-Br + KI
$$\xrightarrow{\text{Acetone}}$$
 R-I + KCl or KBr (Conant finkelstein reaction)
 $2\text{CH}_3\text{Cl} + \text{Hg}_2\text{F}_2 \xrightarrow{\text{Water}} 2\text{CH}_3\text{-F} + \text{Hg}_2\text{Cl}_2$ (Swart reaction)

Note: Finkelstein reaction can only be used to prepare R-I and swart's reaction can only be used to prepare R-I

3.2 Physical Properties

- (a) The lower members CH₃F, CH₃Cl, CH₃Br, C₂H₅Cl and C₂H₅F are gases at room temp.
- (b) Higher B.P. than parent alkanes.


Decreasing order of B.P. is :
$$R-I > R-Br > R-CI > R-F$$

among isomeric R—X, decreasing order of B.P. is : **Primary** > **Secondary** > **tertiary**

- (c) R—F and R—Cl \longrightarrow lighter than water R—Br and R—I \longrightarrow heavier than water Decreasing order of density is : R—I > R—Br > R—Cl > R—F
- (d) R—X are polar co-valent compounds but insoluble in water because they can not form H-bonds. They dissolve in organic solvents.
- (e) R—X (except R—F) burns with a green flame when interacted with Cu wire. (Beliestein test)
- (f) Dipole moment order-

(i)
$$CH_3Cl > CH_3F > CH_3Br > CH_3I$$
 (ii) $Cl > Cl > Cl$

3.3 Chemical Properties

3.3.1 Nucleophilic substitution reaction (S_N):

(g) Reaction with KCN and AgCN:

$$\stackrel{\delta^{+}}{R} - \stackrel{\delta^{-}}{X} + \stackrel{\bigoplus}{KCN} \stackrel{\ominus}{\longrightarrow} \underbrace{\stackrel{Alc.}{-}}_{\Delta} \rightarrow \qquad R - C = N + R - NC + KX$$

$$\stackrel{\text{lonic}}{\text{lonic}} \qquad \qquad \text{cyanide} \qquad \qquad \text{Isocyanide}$$

$$\stackrel{\text{(major)}}{\text{(minor)}} \qquad \qquad \text{(minor)}$$

• :CN ion is an ambident nucleophile.

(h) Reaction with KNO_2 and $AgNO_2$:

$$\stackrel{\delta^{+}}{R} \stackrel{\delta^{-}}{=} \stackrel{KO}{X} + \stackrel{\bigoplus}{KO} \stackrel{\Theta}{=} NO \xrightarrow{\quad Alc. \quad} \\ \stackrel{Ionic}{\longrightarrow} \qquad \qquad R-O-N = O + R-NO_{2} + KX \\ \stackrel{Alkyl \ nitrite}{\longrightarrow} \qquad \qquad Nitro \ alkane \\ \qquad \qquad (Major) \qquad (Minor)$$

(i) Reaction with NaOR' (Sodium alkoxide):

$$R$$
— X + $NaOR'$ — — — R — OR' + NaX

(williamson synthesis reaction)

(j) Reaction with NH₃:

$$R-X+NH_{3} \xrightarrow{\Delta} R-NH_{2} \xrightarrow{R-X} R-NH-R \xrightarrow{R-X} R-N-R$$

$$\downarrow R$$

$$\downarrow R-X$$

$$\downarrow R$$

$$\downarrow R$$

(k) Reaction with CH≡CNa:

$$R-X + CH \equiv CNa \xrightarrow{\Delta} R-C \equiv CH + NaX$$

If
$$CH_3$$
 $CH_3 - C - X + CH \equiv \overline{C}Na$ $-\Delta \rightarrow CH_3 - C = CH_2 + NaX + CH \equiv CH$ CH_3 CH_3 CH_3 (3° halide) (Elimination is more)

3.3.2 Dehydrohalogenation : Alkyl halides undergo β - elimination on treatment with KOH (alc.) or NaNH₂.

$$R - \overset{\beta}{C}H_2 - \overset{\alpha}{C}H_2 - X + KOH(alc.) \xrightarrow{\Delta} R - CH = CH_2 + HX$$

$$CH_3 - CH_2 - CH_2 - CH_2 - Br + KOH(alc.) \xrightarrow{\Delta} CH_3 - CH_2 - CH = CH_2 + HBr$$

$$\begin{array}{c} \begin{bmatrix} H & Br \\ -+---+- \end{bmatrix} \\ CH_3 - CH - CH - CH_3 & \xrightarrow{Alc.KOH} \\ \Delta & CH_3 - CH - CH_3 + CH_3 - CH_2 - CH - CH_2 + HBr \\ But-2 - ene (80\%) & But-1-ene (20\%) \end{array}$$

3.3.3 Wurtz Reaction :
$$2RX + 2Na \xrightarrow{Dryether} R - R + 2NaX$$

When a mixture of different alkyl halides, $(R_1 - X)$ and $(R_2 - X)$ is used a mixture of alkane is formed -

$$R_1 \hspace{-0.1cm} -\hspace{-0.1cm} X + 2 Na + X \hspace{-0.1cm} -\hspace{-0.1cm} R_2 \xrightarrow{\hspace{0.1cm} \text{Dry\,ether}\, \Delta} \hspace{0.1cm} R_1 \hspace{-0.1cm} -\hspace{-0.1cm} R_2 + R_1 \hspace{-0.1cm} -\hspace{-0.1cm} R_1 + R_2 \hspace{-0.1cm} -\hspace{-0.1cm} R_2 + NaX$$

3.3.4 Formation of Organometallic compounds:

(i)
$$R-X + Mg \xrightarrow{dry \ ether} RMgX$$
 (Grignard reagent)

(ii)
$$2C_2H_5Br + 2Zn \xrightarrow{dry \ ether} (C_2H_5)_2 Zn$$
 (Frankland reagent) + $ZnBr_2$

(iii)
$$4C_2H_5Cl + 4Na / Pb \longrightarrow (C_2H_5)_4 Pb + 4NaCl + 3Pb$$

Sodium lead Alloy Tetra ethyl lead (used as antiknocking agent)

3.3.5 Friedel - Crafts reaction:

4.0 DIHALIDES

General formula $C_nH_{2n}X_2$. Two H - atom of alkanes, replaced by two halogen atoms to form dihalides. Dihalides are classified as:

(a) **Gem dihalide**: The term Gem is derived from geminal means - same position.

Two similar halogen atoms are attached to same C - atom

(b) Vic dihalides: Vic term from - Vicinal means adjacent C - atoms

Two halogen atoms are attached on adjacent carbon atom.

Ethylene dihalide Propylene dihalide (1,2-Dihaloethane) (1,2-Dihalopropane)

(c) α, ω dihalides: Halogen atoms are attached with terminal C - atom. They are separated by 3 or more C - atoms. They are also known as polymethylene halides.

E

General Methods of Preparation

(a) Gem dihalides:

By the reaction of PCl₅ on carbonyl compound.

$$CH_{3} - C - H + PCl_{5} \longrightarrow CH_{3} - C - H + POCl_{3}$$

$$CI$$

$$CH_{3} - C - H + POCl_{3}$$

Acetaldehyde

Ethylidene chloride

Acetone

2, 2 - Dichloropropane

(ii) By addition of halogen acids on alkynes:

$$CH \equiv CH + HBr \longrightarrow CH_2 = CHBr \xrightarrow{\quad HBr \quad} CH_3 CHBr_2$$

Vinyl bromide 1, 1 - Dibromoethane

(b) Vic-dihalides:

(i) By the addition of halogens to alkenes:

$$CH_3-CH=CH_2+Br_2 \longrightarrow CH_3-CH-CH_2$$
 $Br Br Br$

1. 2 - Dibromo propane

(ii) By the action of PCl_5 on glycols :

$$\begin{array}{ccc} \mathsf{CH}_2\mathsf{OH} & & & \mathsf{CH}_2\mathsf{CI} \\ \mathsf{I} & \mathsf{CH}_2\mathsf{OH} & & \mathsf{PCI}_5 & \longrightarrow & \mathsf{I} \\ \mathsf{CH}_2\mathsf{CI} & & \mathsf{CH}_2\mathsf{CI} \end{array} + 2\mathsf{POCI}_3 + 2\mathsf{HCI}$$

Physical Properties

- Lower members are colourless, oily liquids with sweet smell. Higher members are solid.
- These are heavier than water.

Chemical Properties

(i) Action of KOH(alc.): (Dehydrohalogenation)

(ii) Action of KOH(aq.): (Hydrolysis) It is a distinction test for gem - and vic - dihalides.

(a)
$$\begin{array}{ccc} CH_2-CI \\ CH_2-CI \end{array} \\ + 2KOH(aq.) \longrightarrow \begin{array}{ccc} CH_2-OH \\ CH_2-OH \end{array} \\ + 2KCI \end{array}$$

Glyco

Vic-dihalide.

1, 2 - Ethanediol

(b)
$$CH_3CHXCH_2X$$
 $\xrightarrow{KOH(aq.)}$ $CH_3-CH-CH_2$ \downarrow \downarrow OH OH Propane - 1, 2 - diol

$$\begin{array}{c} \text{CH}_3 \\ | \\ \text{CHX}_2 \end{array} \xrightarrow{\text{KOH}_{\text{(aq.)}}} \begin{array}{c} \text{CH}_3 \\ | \\ \text{CHO} \end{array} \text{ and } \text{CH}_3\text{CX}_2\text{CH}_3 \xrightarrow{\text{KOH(aq.)}} \text{CH}_3\text{COCH}_3 \end{array} \text{ (Ketone)}$$

Gem-dihalides

(iii) Reaction with KCN:

$$\begin{array}{c} \text{CH}_2\text{Cl} \\ | \\ \text{CH}_2\text{Cl} \\ \end{array} + 2\text{KCN} \xrightarrow{\qquad -2\text{KCl} } \xrightarrow{\qquad -2\text{KCl}} \xrightarrow{\qquad$$

$$CH_{3}-CH < \begin{matrix} Cl & \frac{2KCN}{-2KCl} \\ Cl & \frac{2CN}{-2KCl} \end{matrix} \rightarrow CH_{3}-CH < \begin{matrix} CN & \frac{H_{2}O/H^{+}}{-CN} \\ CN & \end{matrix} \rightarrow CH_{3}-CH < \begin{matrix} COOH & \frac{\Delta}{-CO_{2}} \\ COOH & \end{matrix} \rightarrow CH_{3}-CH_{2}COOH \end{matrix}$$
 Propanoic acid

- (i) CN group on acid hydrolysis gives COOH
- (ii) Two COOH group on one C atom always loose CO2 to form monocarboxylic acid on heating.
- (iii) Two COOH group on vic. C atom loose H₂O to form cyclic anhydride on heating.

(iv) Dehalogenation:

Vic.
$$CH_2Br$$
 $+ Zn$ CH_3OH $|$ $+ ZnBr_2$ CH_2 $+ ZnBr_2$

Same Carbon Product

BEGINNER'S BOX-1

- 1. Which of the following is not organometallic compound
 - (1) RMgX
- $(2) R_{o}Zn$
- (3) RONa
- (4) R₂Hg

- **2.** Which is Finkelstein reaction?
 - (1) R-X + NaI $\xrightarrow{\text{acetone}}$

(2) $R-X + AgF \longrightarrow$

(3) $R-X + NaF \longrightarrow$

 $(4) R-F + AgCl \longrightarrow$

5.0 TRI HALIDES (Haloform CHX₃)

5.1 General Method of Preparation

(i) From
$$CH_4$$
: $CH_4 + 3Cl_2 \xrightarrow{hv} CHCl_3 + 3HCl$

(ii) By Haloform reaction (lab method):

$$\begin{array}{c} \text{CH}_3\text{CH}_2 - \text{OH} \\ \text{or} \\ \text{CH}_3\text{COCH}_3 \end{array} \begin{array}{c} \text{Bleaching powder } [\text{CaOCl}_2] \\ \text{H}_2\text{O}/\Delta \end{array} \\ \text{CHCl}_3 \end{array} \begin{array}{c} \text{(HCOO)}_2\text{Ca} \\ \text{(CH}_3\text{COO)}_2\text{Ca} \end{array}$$

Mechanism:

$$\begin{split} \text{CaOCl}_2 \ + \ \text{H}_2\text{O} &\longrightarrow 2\text{Cl} \ + \ \text{Ca} \ (\text{OH})_2 \\ \text{CH}_3\text{CH}_2\text{-OH} \ + \ 2\text{Cl} &\longrightarrow \text{CH}_3\text{CHO} \ + \ 2\text{HCl} \\ \text{CH}_3\text{CHO} \ + \ 6\text{Cl} &\longrightarrow \text{CCl}_3\text{CHO} \ + \ 3\text{HCl} \\ \text{CCl}_3\text{CHO} \ + \ \text{Ca} \ (\text{OH})_2 &\longrightarrow \text{CHCl}_3 \ + \ (\text{HCOO})_2\text{Ca} \\ \end{split} \tag{Hydrolysis}$$

If CH₃COCH₃ is used then CHCl₃ is formed into 2 steps (Chlorination and Hydrolysis)

(+) ve haloform reaction : Reaction which gives haloform with alkali and X_2 is called as (+) ve haloform reaction.

Aldehydes: Only acetaldehyde CH 3—C—H

Ketones :
$$CH_3 - C - Z$$

Ex . CH
$$_3$$
—C—CH $_3$, CH $_3$ —C—CH $_2$ —CH $_3$, CH $_3$ —C—CH $_2$ CH $_3$ etc. (All methyl ketones) 0

CH
$$_3-C-COOH$$
 , CH $_3-C-CHO$ Also show haloform reaction. $\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{bmatrix}$

(-) ve haloform reaction : Reaction in which haloforms are not formed with $\boldsymbol{X}_{\!\scriptscriptstyle 2}$ and alkali.

(iii) Preparation of pure CHCl₃:

$$CCl_3CHO. 2H_2O \xrightarrow{NaOH} CHCl_3 + HCOONa + 2H_2O$$

Chloral hydrate (Pure Chloroform)

Chloral can also be used in preparation of D.D.T.

$$CCl_3CH = O + 2H - O - Cl \xrightarrow{H_2SO_4} CCl_3CH - O - Cl$$

 $\begin{array}{c} \hbox{Dichloro diphenyl trichloro ethane} \\ \hbox{(DDT)} \end{array}$

(iv) Industrial preparation:

$$\begin{array}{cccc} CH_3CH_2 & & & & HCOONa \\ & or & & \xrightarrow{aq.\ NaCl/electrolysis} & CHCl_3 & + & or \\ CH_3COCH_3 & & & CH_3COONa \end{array}$$

5.2 Physical Properties

CHCl₃ is colourless and sweet smelling liquid. It's B.P. is 61° C and it is insoluble in H₂O and have density more than H₂O. Chloroform is used as Anaesthetic.

5.3 Chemical Properties

(i) Oxidation:
$$CHCl_3 + [O] \xrightarrow{Air and light} COCl_2 + HCl_3$$

Phosgene gas or

Carbonyl Chloride

(Poisonous gas)

 $\mathrm{CHCl_3}$ is stored in dark coloured bottles which are filled upto the brim to prevent oxidation of $\mathrm{CHCl_3}$ into $\mathrm{COCl_2}$ and 1% ethanol is also added to chloroform

$$O = C < Cl \\ Cl \\ + 2HO - C_2H_5 \xrightarrow{-2HCl} O = C < OC_2H_5 \\ OC_2H_5$$

[Poisonous]

Diethyl carbonate [Non-Poisonous]

GOLDEN KEY POINTS

Test of CHCl₃

 Reagent
 Pure CHCl₃
 Impure CHCl₃ (COCl₂ +HCl)

 • Blue litmus
 No Change
 turns into red

 • AgNO₃
 No reaction
 White ppt of AgCl

 • Conc. H₂SO₄
 No reaction
 Yellow solution

Unstable

E

ALLEN

(iii) Carbyl amine reaction or isocyanide test: (Hoffman's carbylamine reaction)

Primary–Amines (Aliphatic or Aromatic) — CHCl₃+KOH → Isocyanides

Isocyanides have unpleasant or offensive smell (Isocyanide test).

$$R-NH_2 \xrightarrow{CHCl_3+KOH} R-NC$$

Mechanism:

$$\begin{array}{c} \text{CHCl}_{3} \xrightarrow{\text{KOH}} : \text{CCl}_{2} \\ \text{(electrophile)} \end{array}$$

$$R \xrightarrow{\text{NH}_{2}} + : \text{CCl}_{2} \xrightarrow{\text{R}} R \xrightarrow{\text{P}} R \xrightarrow{\text{P}} R \xrightarrow{\text{O}} R \xrightarrow{\text{C}} R$$

(iv) Reimer Tieman's reaction:

$$\begin{array}{c} \text{OH} \\ & \xrightarrow{\text{CHCl}_3 + \text{KOH}} \end{array} \\ & \xrightarrow{\text{Salicylaldehyde (o-Hydroxy benzaldehyde)}}$$

Mechanism : :CCl₂ is neutral attacking electrophile (formed by α, α – elimination reaction)

Note: If CCl₄ is used in place of chloroform, salicylic acid is formed as product.

$$\begin{array}{c}
OH \\
& (i) (CCl_4 + KOH), \Delta \\
& (ii)H^{\oplus}
\end{array}$$

$$\begin{array}{c}
OH \\
COOH \\
(Salicyclic acid)$$

(v) Reaction with CH₃COCH₃:

$$CH_{3} - C - CH_{3} + H - CCl_{3} \xrightarrow{\bullet OH} CH_{3} - C - CH_{3}$$

$$OH CCl_{3}$$

Chloritone (Hypnotic)

(vi) Reaction with HNO₃:

$$CCl_3 - H + HO - NO_2 \longrightarrow CCl_3 - NO_2 + H_2O$$

Chloropicrin or nitrochloroform

(Tear gas)

(vii) Reaction with CH₃CH=CH₂:

$$CH_{3}\text{--}CH = \underbrace{CH_{2}}_{CCl_{3}} \xrightarrow{CHCl_{3}/Peroxide} CH_{3}\text{--}CH - \underbrace{CH_{2}}_{H} \xrightarrow{CH}_{CCl_{3}}$$

A free radical addition reaction

(viii) Reaction with Ag : $CHCl_3 \xrightarrow{Ag} CH \equiv CH$

(ix) FCR: $3Ph-H+CHCl_3 \xrightarrow{AlCl_3} Ph_3CH$ Triphenyl methane

GOLDEN KEY POINTS

Iodoform Test

$$\begin{array}{c|c} CH_3CH_2OH & & & & \\ or & & & \\ CH_3COCH_3 & & & \\ \hline \end{array} \xrightarrow{\begin{array}{c} I_2 + \text{ NaOH or NaOI or OI} \\ \text{ or } I_2 + \text{ Na}_2CO_3 + H_2O \end{array}} \rightarrow \begin{array}{c} CHI_3 \\ \text{ yellow crystals} \\ \text{ of iodoform} \end{array}$$

• CHI₃ give yellow ppt. of AgI with AgNO₃ but CHCl₃ does not give AgCl ppt.

Reason: CHI₃ is thermally less stable than CHCl₃.

lodoform test can be used to distinguish the following pairs of compounds.

- (i) CH₃CH₂OH and CH₃OH
- (ii) CH₃CHO and CH₃CH₂CHO
- (iii) 2-Pentanol and 3-Pentanol
- (iv) Acetophenone and benzophenone
- (v) 2-Propanol and 1-Propanol

Freons

The chlorofluoro derivatives of methane and ethane are called freons.

CF,Cl, - (dichloro difluoro methane)

C₂F₂Cl₄ – (Tetrachloro difluoroethane)

Most useful is CF₂Cl₂ (Freon-12)

Nomenclature of freons:

Freon – cba
$$c = n_{c-1}$$

$$b=n_{H+1}$$

$$a = n_F$$

$$c = n_{C-1} = 1 - 1 = 0$$

$$c = n_{C-1} = 1 - 1 = 0$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c = n_{C-1} = 2 - 1 = 1$$

$$c=n_{C-1}=2-1=1$$
 $C_2F_4Cl_2 \longrightarrow b=n_{H+1}=0+1=1$
 $a=n_F=4$
Freon-114

Excess use of Freons is harmful for Ozone layer (depletion of Ozone layer).

6.0 Grignard Reagent

General Method of Preparation

Grignard reagents are prepared in the laboratory by the action of alkyl halides on magnesium metal in the presence of dry ether.

$$R-X+Mg$$
 \xrightarrow{dry} R — Mg — X

(Grignard reagent)

(Alkyl magensium halide)

The ease of formation of Grignard reagent is in the order RI > RBr > RCl Ether is used to dissolve the Grignard reagent by coordination.

6.2 Chemical Reactions

di licactions				
	(i) O ₂ (ii) H ₃ O ⁺	\rightarrow	R—OH	1° Alcohol
	H ₂ C=O/H ₃ O ⁺	\rightarrow	RCH ₂ —OH	1° Alcohol
	CH ₂ -CH ₂ /H ₃ O ⁺	\rightarrow	R—CH ₂ —CH ₂ —OH	1° Alcohol
R—Mg—X	RCHO/H₃O ⁺	\rightarrow	R ₂ CHOH	2° Alcohol
	HCOOEt/H₃O ⁺	\rightarrow	R ₂ CHOH	2° Alcohol
	RCOR/H₂O	\rightarrow	R ₃ C—OH	3° Alcohol
	RCOOEt/H ₂ O (2 : 1)	\rightarrow	R₃C—OH	3° Alcohol
	HCOOEt (1:1)	\rightarrow	RCHO	aldehyde
	RCN/H ₂ O	\rightarrow	RCOR	Ketone
	RCOOEt (1:1)	\rightarrow	RCOR	Ketone
	CO ₂ /H ₂ O	\rightarrow	RCOOH	Acids
	${ m HOH}$ or ${ m ROH}$ or ${ m NH_{_3}}$ or ${ m Ph}$ — ${ m OH}$			
	or R—NH ₂ or RNH — R or CH \equiv CH or Ph — NH ₂			
	R—X	\rightarrow	R—H	Alkane
	R ₃ N	\rightarrow	R—R	Alkane
	CICH ₂ —CH=CH ₂	\rightarrow	No reaction	Δ11
	Cl—NH ₂	→	$R-CH_2-CH = CH_2$	
	Cl—CN	\rightarrow	R—NH ₂	1° Amine
		\rightarrow	R—CN	Cyanides
	ClCOOEt	\rightarrow	RCOOEt	Ester

7.0 Haloarene

If halogen atom is directly attached to the benzene ring, then compound is called as Haloarene.

Ex.

CH₃

(Chlorobenzene)

(2-Chlorotoluene)

(2,4-Dichlorotoluene)

7.1 General Methods of Preparation

(1)
$$\bigcirc$$
 + Cl_2 $\xrightarrow{\operatorname{AlCl}_3}$ \bigcirc + HCl

(2)
$$OH$$

$$+ PCl_5 \xrightarrow{\Delta} OH$$

$$+ POCl_3 + HCl$$

$$3C_6H_5OH + POCl_3 \longrightarrow (C_6H_5)_3 PO_4 + 3HCl$$

7.2 Chemical Properties

(1)
$$OH$$

$$+ NaOH \xrightarrow{\text{(i) } 623\text{K, } 300 \text{ atm}} OH$$

$$+ NaOH \xrightarrow{\text{(ii) } H^{\oplus}} OH$$

$$+ NaCH \xrightarrow{\text{(iii) } H^{\oplus}} OH$$

Presence of electron withdrawing group on ring makes the nucleophilic substitution easier.

Reactivity Order: (Towards nucleophilic substatitution)

(2) Fittig reaction:

$$\begin{array}{c}
\hline
\bigcirc \quad \text{Cl} + 2\text{Na} + \text{Cl} \quad \hline
\bigcirc \quad \frac{\text{dry ether}}{\Delta} \quad \overline{\bigcirc} \quad \overline{\bigcirc} \quad + 2\text{NaCl}
\end{array}$$
(Diphenyl)

(3) Wurtz fittig reaction:

(4) Electrophilic Substitution Reaction:

Note: Cl is o- and p-directing group.

(ii)
$$\bigcirc$$
 + HNO₃ $\xrightarrow{\text{conc. H}_2\text{SO}_4}$ \bigcirc \bigcirc NO₂ + \bigcirc NO₂

(Major)

(Major)

(iv)
$$\bigcirc$$
 + CH₃Cl $\xrightarrow{anhy. AlCl_3}$ \bigcirc Cl \longrightarrow CH $_3$ + \bigcirc CH $_3$ (Major)

BEGINNER'S BOX-2

- **1.** Which can give haloform with X_2/OH^- ?
 - (1) CH₃OH

(2) CH_3 - CH_2 -CH=O

(3) CH₃CHO

- (4) CH₃CH₂CH₂OH
- 2. Which of the following compounds cannot be identified by carbylamine test?
 - (1) $C_6H_5-NH-C_6H_5$

(2) CH₃CH₂NH₂

(3) CHCl₃

- (4) $C_6H_5-NH_2$
- 3. For preparation of Grignard reagent from haloalkanes which metal is used :-
 - (1) Na

(2) Mg

(3) Ca

(4) Ag

ANSWER KEY

BEGINNER'S BOX-1	Que.	1	2					
DLOMNLK 3 DOX-1	Ans.	3	1					
BEGINNER'S BOX-2	Que.	1	2	3				
DLOIMNER 3 DOA-2	Ans.	3	1	2		·	·	

EXERCISE-I (Conceptual Questions)

Build Up Your Understanding

GENERAL METHOD OF PREPARATION

- 1. Alkyl halides can be obtained by all methods excepts
 - (1) CH_3 — CH_2 —OH + HCl $\underline{ZnCl_2}$
 - (2) $CH_2 = CH CH_3 + HBr \longrightarrow$
 - $(3) C_{o}H_{E}OH + NaCl \longrightarrow$
 - (4) $CH_3COOAg + Br_2 / CCl_4 \xrightarrow{hv}$
- **2.** Which of the following will not give iodoform test

(2)
$$C_2H_5-C-C_2H_5$$

- **3.** Which of the following product is obtained when bleaching powder is distilled with acetone
 - (1) CCl₄
- (2) CHCl₃
- (3) CH₃—CH₃
- (4) All
- **4.** Which will give yellow ppt. with iodine and alkali
 - (1) Propan-2-ol
- (2) Benzophenone
- (3) Methyl acetate
- (4) Acetamide

PHYSICAL PROPERTIES

- **5.** Which of the following has the highest boiling point
 - $(1) CH_3CH_2I$
- (2) CH₂Cl
- (3) CH₃I
- (4) CH₂Br
- **6.** A compound containing two –OH groups attached with one carbon atoms is unstable but which one of the following is stable
 - (1) CH₃CH OH
- (3) $Cl_3C-CH < OH OH$
- (4) All

CHEMICAL PROPERTIES

- 7. Arrange the following compounds in decreasing order of reactivity in SN^1 reaction:-
 - (a) Ph-CH₂-Cl
- (b) (Cl

(c) Cl

- $\begin{array}{c} \operatorname{CH_3} \\ \mid \\ \text{(d) } \operatorname{CH_3-C-CH_2-Cl} \\ \mid \\ \operatorname{CH_3} \end{array}$
- (1) a > c > b > a
- (2) c > d > b > a
- (3) a > b > c > d
- (4) b > a > c > d
- 8. $OH \xrightarrow{CHCl_3+KOH} Product.$

about above reaction the incorrect statement is

- (1) The name of reaction is Reimer-Teiman's reaction
- (2) The intermediate in the reaction is dichloro carbene
- (3) The final product is salicylaldehyde
- (4) The final product is benzyl chloride
- **9.** The purity of CHCl₃ can be checked by
 - (1) treating CHCl₂ by NaOH
 - (2) treating CHCl₃ by HCl
 - (3) treating CHCl₂ with aq. AgNO₃
 - (4) treating CHCl₂ by C₂H₅-OH
- **10.** Pure CHCl₃ and pure CHI₃ can be distinguished by
 - (1) treating with litmus paper
 - (2) treating with aq. KOH
 - (3) treating with HCl
 - (4) treating with aq. AgNO₂
- 11. Arrange the following compound in decreasing order of reactivity in SN^2 reaction.
 - (a) CH_3 -C- CH_2 -Br
 - (b) CH₃-CH₂-CH₂-CH₂Br
 - (c) CH₃-CH-CH₂-B: | | CH₃
 - (d) CH₃-CH-CH₂CH₃
 - (1) b > c > d > a
- (2) a > b > c > d
- (2) b > c > a > d
- (4) c > a > b > d

12. Which of the following undergoes hydrolysis most easily

(3)
$$NO_2$$
 NO_2 NO_2

$$(4) NO_{2} CI NO_{3}$$

- **13.** Which of the following is used as insecticide
 - (1) D.D.T.
- (2) Chloritone
- (3) CHCl₃
- (4) All of them
- **14.** Which of the following when heated with KOH and primary amine gives carbylamine test
 - (1) CHCl₃
- (2) CH₂Cl₂
- (3) CH₂OH
- (4) CCl₄
- 15. Which reaction gives elimination as a major product

(1)
$$CH_3$$
 $\stackrel{\bigcirc}{\mid}$ \ominus \ominus \ominus \bigcirc (1) CH_3 $\stackrel{\bigcirc}{\mid}$ CH_3 $+$ CH_3 $+$ CH_3

(2)
$$CH_3$$
- CH_2 - $Br + NaCN \xrightarrow{DMSO}$

(3)
$$CH_3$$
- CH_2 - $Br + NaI \xrightarrow{Dryacetone}$

(4)
$$CH_3$$
 CH_3
 $C-Br + CH_3ONa \longrightarrow CH_3$

- **16.** Iodoform gives a precipitate with ${\rm AgNO_3}$ on heating but chloroform does not because
 - (1) Iodoform is ionic
 - (2) Chloroform is covalent
 - (3) C-I bond in iodoform is weak and C-CI bond in chloroform is strong
 - (4) None of the above

17. Which reaction product is wrong (major) product.

(1)
$$CH_3CH_2CHCH_3 \xrightarrow{\Theta \\ OH/\Delta} CH_3CH_2CH=CH_2$$

(2)
$$CH_3CH_2CHCH_3 \xrightarrow{O O Na} CH_3CH_2CH=CH_2$$
Br

$$(4) \bigcirc Br \xrightarrow{CH_3ONa} \bigcirc$$

- **18**. When alkyl magnesium halide reacts with $R-NH_{2}$, the product is
 - (1) R-R
- (2) R—H
- (3) R₂NH
- (4) R X
- **19.** Chloroform on reaction with acetone gives:-
 - (1) Acetylene
- (2) Chloretone
- (3) Nitrochloroform
- (4) Chloroacetone
- **20.** Chloroform reacts with aniline and aqueous KOH gives :-
 - (1) Ph N $\stackrel{?}{=}$ C (Phenyl isocyanide)
 - (2) Benzene
 - (3) Phenyl cyanide
 - (4) None of these
- **21.** Which reaction product is wrong (major) product

$$(1) \bigcirc Br \xrightarrow{Zn(dust)}$$

(2)
$$CH_3CH_2CH_2Br \xrightarrow{Nal \text{dry Acetone}} CH_3CH_2CH_2I$$

(3) CH₃CHCHCH₃
$$\xrightarrow{Zn(dust)}$$
 CH₃CH=CHCH₃ Br Br

(4)
$$CH_3CH_2CHCl_2 \xrightarrow{\text{(i)NaNH}_2\text{(excess)}} CH_3C = CH$$

- **22.** Which of the following undergoes nucleophilic substitution by SN^1 mechanism at fastest rate :
 - (1) CH₃-CH₂-Cl
- (2) CH₃-CH-Cl
- (3) $\langle \bigcirc \rangle$ -CH₂-C
- (4)

23. Which of the following pair is differentiated by iodoform test?

(4)
$$CH_2$$
, CH_2

24. Identify z in the following series

$$CH_2 \!\!=\!\! CH_2 \!\! \xrightarrow{\quad HBr \quad \quad Mydrolysis \quad } \!\! y \frac{I_2 \, / \, NaOH}{z} z$$

- (1) C_2H_5I
- $(2) C_0 H_r O H_r$
- (3) CHI₃
- (4) CH₃CHO

25.
$$\begin{array}{c|c}
I_{2} & A + B \\
\hline
NaOH & Yellow \\
ppt
\end{array}$$

$$\begin{array}{c|c}
A & + B \\
H^{\oplus}
\end{array}$$

$$C \xrightarrow{\Delta} D$$

Identify D:-

26.
$$C_6H_5CCl_3 \xrightarrow{Cl_2} X$$

In the above reaction X is

(4) None of these

27.
$$\begin{array}{c}
Cl \\
\hline
NaOH \\
\Delta \& pr
\end{array}$$
:

Rate of reaction is maximum if G is :-

- (1) –OCH₃
- $(2) CH_3$
- (3) -NO₂
- (4) –H
- **28.** Which does not gives iodoform test:

EXERCISE-I (Conceptual Questions)

Δ	NS	W	Э	R	K	ΕY
-		1 A 1	_		1 A 1	

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	2	2	1	1	3	4	4	3	4	2	4	1	1	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28		
Ans.	3	3	2	2	1	1	3	2	3	2	1	3	4		

AIPMT 2009

1. Trichloroacetaldehyde, CCl₃CHO reacts with chlorobenzene in presence of sulphuric acid and produces:-

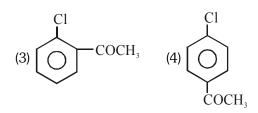
AIPMT 2010

2. In the following reaction

$$C_6H_5CH_2Br \xrightarrow{\quad 1.Mg, \; Ether \quad} X,$$

The product 'X' is :-

- $(1) C_6H_5CH_2OH$
- (2) $C_6H_5CH_3$
- (3) C₆H₅CH₂CH₂C₆H₅
- $(4)C_6H_5CH_2OCH_2C_6H_5$
- **3.** Following compounds are given :
 - (a) CH₃CH₂OH
- (b) CH₃COCH₃
- (c) CH₃-CHOH CH₃
- (d) CH₃OH


Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?

- (1) Only (a)
- (2) (a), (b) and (c)
- (3) (a) and (b)
- (4) (a), (c) and (d)

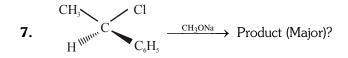
AIIMS 2010

4.
$$(CH_3CO)_2O \xrightarrow{Anhydrous AlCl_3} X$$

What is major product (X):-

AIPMT Mains 2012

- **5.** Which of the following compounds will give a yellow precipitate with iodine and alkali?
 - (1) Acetamide
 - (2) Propan-2-ol
 - (3) Acetophenone
 - (4) Methyl acetate

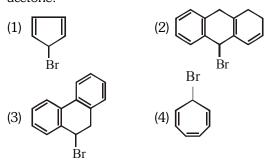

AIIMS 2016

6. Arrange the following compounds in order of their boiling point

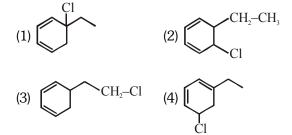
$$\begin{array}{ccc} CH_3 \\ CH_3-C-Br \\ CH_3 \\ (I) \\ CH_3-CH_2-CH_2-CH_2-Br \\ (III) \end{array}$$

- (1) I > II > III
- (2) III > II > I
- (3) II > I > III
- (4) III > I > II

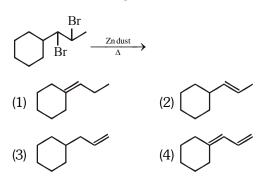
AIIMS 2017


(1)
$$CH_3$$
 C_6H_5 C_6H_5 (2) C_6H_5

8. Correct order of reactivity towards nucleophilic substitution reaction of following is:-


$$\begin{array}{ccc}
CH_2-CH_2-CI & CH_2-CI \\
\hline
CI & CI
\end{array}$$

$$(III) \bigcirc CI \\ (III) \bigcirc CI \\ (IV) \bigcirc IV) \bigcirc IV$$


- (1) II > I > IV > III (2) III > IV > I > II
- (3) II > IV > I > II (4) IV > II > III > I
- **9.** Which of the following react fastest with aqueous acetone.

10. \longrightarrow Product of reaction is -

11. Product of following reaction is :-

EXERCISE-II (Previous Year Questions)

Λ		r-a	V.V.	-	R	ĸ	 •
_	V	-		_			-

Que.	1	2	3	4	5	6	7	8	9	10	11
Ans.	1	2	2	4	2,3	2	4	1	4	1	2

EXERCISE-III (Analytical Questions)

- **1.** Which of the following has highest dipole moment:
 - (1) CH₂Cl
- (2) CH₂F
- (3) CH₂Br
- (4) CH₂I
- **2.** The final product in the reaction is

$$Ph -OH + CCl_{4} \xrightarrow{(1) \text{ KOH}, \Delta} product$$

- (1) Salicyl aldehyde
- (2) Salicylic acid
- (3) Methyl salicylate
- (4) Benzyl chloride
- **3.** Arrange the following in order of ease of dehydrohalogenation:

- (1) (iii) > (iv) > (ii) > (i)
- (2) (iii) > (ii) > (i) > (iv)
- (3) (ii) > (iii) > (i) > (iv)
- (4) (i) > (ii) > (iii) > (iv)
- **4.** The product in the following reaction is

$$Ph$$
— $Cl + Fe / Br_2$ — \longrightarrow Product

- (1) o-bromo-chloro benzene
- (2) p-bromo-chloro benzene
- (3) both the above
- (4) 2,4,6-tribromo chloro benzene
- **5.** Isobutyl magnesium bromide with dry ether and absolute alcohol gives

(1)
$$CH_3$$
— CH — CH_2OH and CH_3CH_2MgBr
 CH_3

(2)
$$CH_3$$
— CH — CH_2 — CH_2 — CH_3 and Mg (OH) Br CH_3

(3)
$$CH_3$$
— CH — CH_3 , CH_2 = CH_2 and $Mg(OH)Br$ CH_3

(4)
$$CH_3$$
— CH — CH_3 and CH_3 CH $_2$ OMgBr

Check Your Understanding

6. Identify 'Z' in the following reaction series,

$$CH_3.CH_2CH_2Br \xrightarrow{aq.NaOH} (X) \xrightarrow{Al_2O_3} (Y)$$

$$Cl_2/H_2O$$
 (Z)

7. Arrange the following compound in increasing order of reactivity towards aromatic nucleophilic substitution reaction.

$$(d)$$
 O O O

- (1) c > d > b > a
- (2) c > b > a > d
- (3) d > c > b > a
- (4) a > d > b > c
- **8.** Chloroform when treated with benzene in presence of anhydrous AlCl₃, the product formed is
 - (1) Chlorobenzene
 - (2) Toulene
 - (3) Mixture of ortho and para chlorotoluene
 - (4) Triphenyl methane

EXERCISE-III (Analytical Questions)

ANSWER KEY

EXERCISE-IV (Assertion & Reason)

Directions for Assertion & Reason questions

These questions consist of two statements each, printed as Assertion and Reason. While answering these Questions you are required to choose any one of the following four responses.

- (A) If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- **(B)** If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- **(C)** If Assertion is True but the Reason is False.
- **(D)** If both Assertion & Reason are false.
- 1. Assertion:—Alkyl halides are not soluble in water.

 Reason:—Alkyl halide does not form H-bonds with water molecule although alkyl halide is polar in nautre.
 - (1) A
- (2) B
- (3) C
- (4) D
- Assertion: CHCl₃ is more acidic than CHF₃.
 Reason: Electronegativity of Fluorine is more than chlorine.
 - (1) A
- (2) B
- (3) C
- (4) D
- **3**. **Assertion**:— Isobutanal does **not** give iodoform test.

Reason: It does not have α -hydrogen.

- (1) A
- (2) B
- (3) C
- (4) D
- **4**. **Assertion**:—Styrene on reaction with HBr gives 1-bromo-1-phenylethane.

Reason:—Benzyl radical is more stable than alkyl radical.

- (1) A
- (2) B
- (3) C
- (4) D

5. **Assertion**: Rate of alkaline hydrolysis of methyl chloride to methanol is higher in DMF than in water.

Reason: Hydrolysis of methyl chloride follows second order kinetics.

- (1) A
- (2) B
- (3) C
- (4) D
- **6. Assertion** :- 2-Bromo butane on reaction with alcoholic KOH mainly gives 2-butene.

Reason: The hydrogen on C_3 carbon is more acidic than hydrogen on C_1 carbon.

- (1) A
- (2) B
- (3) C
- (4) D
- **7. Assertion**:- Chlorobenzene is less reactive than benzene for electrophilic substitution reaction.

Reason: Resonance effect in chlorobenzene destabilized carbocation intermediate.

- (1) A
- (2) B
- (3) C
- (4) D

EXERCISE-IV (Assertion & Reason)

ANSWER KEY

Que.	1	2	3	4	5	6	7
	_	_		_			
Ans.	1	2	3	2	1	3	3
	_	_	_	_	_	_	_

E