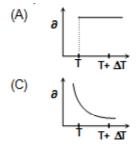
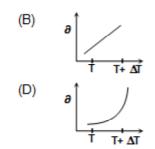
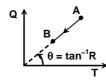

EXERCISE 02


SECTION: (A) - Single Correct Options

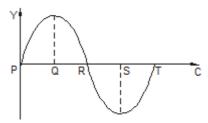

402. Which graph correctly represent variation of B = $\frac{-\partial v/\partial p}{v}$ with p for an ideal gas at constant temperature



403. An ideal gas is initially at temperature T, volume V, its volume is increased by Δv due to an increase in temperature ΔT , pressure remaining constant. The quantity $\delta = \frac{\Delta V}{v\Delta T}$ varies with temperature as

- **404.** Gaseous hydrogen contained initially under standard condition in a sealed vessel of 5 litre was cooled by 55 K. The internal energy will change by
 - (A) 0.23 kJ
- (B) 0.5 kJ
- (C) 0.1 kJ
- (D) none of these
- 405. The heat input (Q) vs temperature (T) curve for a process for 1mole of monoatomic gas is

The corresponding PV equation for the process will be

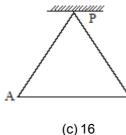

- (A) PV = constant
- (B) PV³ = constant
- (C) $PV^{3/2}$ = constant
- (D) PV⁵ = constant
- **406.** The pressure and density of a diatomic gas is changed adiabatically from (p, d) to (p', d'). If $\frac{d}{d'} = 32$. Find value of $\frac{P}{d}$.
 - (A) $\frac{P'_{1}}{128}$
- (B) 32
- (C) 128
- (D) none of these
- **407.** Two air column closed at one end with lengths 40 cm and 40.5 cm length are sounding their fundamental note at temperature of 36°C. They produce 14 beats in 5 seconds. The velocity of sound in air at 0°C is
 - (A) 340 m/s
- (B) 350 m/s
- (C) 360m/s
- (D) none

408.	The explosion of a fire cracker in air at height of 40 m produces a 100 dB sound level at ground below. What is the instantaneous total radiated power assuming it radiates as point source.				
	(A) 151watt	(B) 201 watt	(C) 251 watt	(D) 301 watt	
409.	- · · · · · · · · · · · · · · · · · · ·	ches a junction. An observand receding train. The	= -	oserves frequency to be 2.2 kHz and f sound = 300 m/s)	
	(A) 25 m/s	(B) 30 m/s	(C) 35 m/s	(D) 40 m/s	
410.	A spherical black body v doubled power radiated		450 W power at 500 K. If	radius were halved and temperature	
	(A) 225	(B) 450	(C) 900	(D) 1800	
411.	•	in acetylene at 27°C unde s has been used up if tem	·	What will be the pressure in cylinder len to 12°C.	
	(A) $1.94 \times 10^6 \text{Pa}$	(B) $2.025 \times 10^6 \text{Pa}$	(C) 1.025 × 10 ⁶ Pa	(D) 3.075 × 10 ⁶ Pa	
412.		n, when a source approame stationary source wit		erver with speed u and is n ₂ when	
	(A) $n_2 > n_1$	(B) $n_1 > n_2$	(C) $n_1 = n_2$	(D) none of these	
413.	If R stands for the gas of following is correct?	onstant and $C_{_{p}}$, $C_{_{v}}$ are sp	ecific heats per mole for a	a solid, then (for a solid) which of the	
	(A) $C_p - C_v = R$	(B) $C_p - C_v < R$	(C) $C_p - C_v = 0$	(D) $C_p - C_v < 0$	
414.	If escape velocity from the earth is 11.1 km/s and the mass of one molecule of oxygen is 5.34×10^{-26} kg, the temperature at which the oxygen molecule will escape from earth, is				
	[Boltzmann constant k	= 1.38 × 10 ⁻²³ J/K]			
	(A) $1.6 \times 10^5 \text{ K}$	(B) $1.6 \times 10^3 \text{ K}$	(C) $1.6 \times 10^2 \text{ K}$	(D) none of these	
415.	Three resonant frequen of transverse wave in the	<u>-</u>	5 and 175 Hz. If the leng	th of the string is 1 metre, the speed	
	(A) 50 m/s	(B) 100 m/s	(C) 150 m/s	(D) none of these	
416.	surface area is A, Stefa	a steady power P from a n's constant is σ , steady $(B) \left(\frac{P}{Ae\sigma}\right)^{5/4}$	state temperature of the		

SECTION: (B) - More Than One Correct Options

- **417.** As a wave propagates:
 - (A) the wave intensity remains constant for a plane wave
 - (B) the wave intensity decreases as the inverse of the distance from the source for a spherical wave
 - (C) the wave intensity decreases as the inverse square of the distance from the source for a spherical wave.
 - (D) total power of the spherical wave over the spherical surface centered at the source remains constant at all times.
- 418. An ideal gas (γ = 1.5) undergoes a thermodynamic process in which temperature and density of the gas are related as $T\rho^2$ = constant. Choose the correct statement(s)
 - (A) Pressure is inversely proportional to volume during process
 - (B) Pressure is directly proportional to volume
 - (C) Molar specific heat capacity for the process is 2.5R
 - (D) Molar specific heat capacity for the process is 3R
- 419. The molar heat capacity for an ideal gas
 - (a) is zero for an adiabatic process
 - (b) is infinite for an isothermal process
 - (c) depends only on the nature of the gas for a process in which either volume or pressure is constant
 - (d) is equal to the product of the molecular weight and specific heat capacity for any process
- 420. For an ideal gas,
 - (a) the change in internal energy in a constant-pressure process from temperature T_1 to T_2 is equal to $nC_v(T_2-T_1)$. Where C_v is the molar heat capacity at constant volume and n is the number of moles of the gas
 - (b) the change in internal energy of the gas and the work done by the gas are equal in magnitude in an adiabatic process
 - (c) the internal energy does not change in an isothermal process
 - (d) no heat is added or removed in an adiabatic process
- **421.** If the third harmonic of vibaration in an open air pipe equals the fifth harmonic of vibration in a closed pipe, then the possible values of the length of air colun in the closed pipe and open pipe, respectively, are:
 - (a) 100 cm, 120 cm
- (b) 60 cm, 72 cm
- (c) 120cm, 150 cm
- (d) 150 cm, 180 cm
- 422. The free ends of the rod of length (L= 0.5m) form anti-nodes while rod is clamped at distance L/4 from one free end. The density of metal of rod and its Young's modulus are 8x10³ kg/m³ and 200x 10⁵ N/m² respectively. Choose the correct statements
 - (a) There are three frequencies of longitudinal waves in rod in the range of 0 kHz to 50 kHz
 - (b) There are two frequencies of longitudinal waves in rod in the range of 0 kHz to 50 kHz
 - (c) Speed of longitudinal sound wave in rod is 4x10³ m/s
 - (d) Speed of longitudinal sound wave in rod is 5 x 103 m/s

423. A sound wave is travelling along positive x-direction. Displacement (y) of particles from their mean positions at anytime t is shown in the figure.

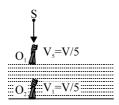


- (a) Particle located at S has zero velocity.
- (b) Particle located at T has its velocity in the negative direction
- (c) Change in pressure at S is zero
- (d) Particles located near R under compression
- **424.** During an experiment, an ideal gas is found to obey a condition $\frac{P^2}{\rho}$ = constant [ρ = density of the gas]. The gas is initially at temperature T, pressure P and density ρ. The gas expands such that density changes to ρ/2.
 - (a) The pressure of the gas changes to $\sqrt{2}P$.
 - (b) The temperature of the gas changes to $\sqrt{2}T$.
 - (c) The graph of the above process on the P-T diagram is parabola.
 - (d) The graph of the above process on the P-T diagram is hyperbola.
- **425.** A wave is represented by the equation:

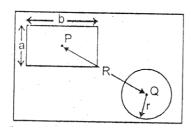
$$y = (Imm)\sin[(50s^{-1})t + (2.0m^{-1})x] + (1mm)\cos[(50s^{-1})t - (2.0m^{-1})x]$$

- (a) The wave-velocity is zero, since it is a standing wave.
- (b) A node is formed at $x = \frac{3\pi}{8} m$.
- (c) The amplitude of the oscillation at the antinode is 2 mm.
- (d) Energy transfer occurs along the positive x-axis.
- **426.** A very light rod AB is initially hung from a point P by means of two identical copper wires of the same length as the rod as shown in the figure. Particles of masses 1 kg and 4 kg are then attached to the ends A and B of the

rod. The ratio of the fundamental frequencies of vibration of the wires AB and BP, i.e., $\frac{f_A}{f_B}$



(a) 4 (b


16 (d) 2

- 427. A metal cylinder of 5 kg is heated electrically by a 20 W heater in a room at 20°C. The cylinder temperature rises uniformly to 30°C in 5 minute and finally becomes constant at 45°C. Assuming that the rate of heat loss is proportional to the excess temperature over the surroundings:
 - (A) The rate of loss of heat of cylinder to surrounding at 25°C is 4W
 - (B) The rate of loss of heat of cylinder to surrounding at 45°C is 20W
 - (C) The rate of loss of heat of cylinder to surrounding at 25°C is 8W
 - (D) The rate of loss of heat of cylinder to surrounding at 45°C is zero

- **428.** Monoatomic, diatomic and triatomic gases whose initial volume and pressure are same, each is compressed till their pressure becomes twice the initial pressure. Then:
 - (A) if the compression is isothermal, then their final volumes will be same
 - (B) if the compression is adiabatic, then their final volumes will be different
 - (C) if the compression is adiabatic, then triatomic gas will have maximum final volume
 - (D) if the compression is adiabatic, then monoatomic gas will have maximum final volume
- **429.** Standing waves are produced on a stretched string of length L with fixed ends . When there is a node at a distance L/3 from one end, then :
 - (A) minimum and next higher number of nodes excluding the ends are 2, 5 respectively
 - (B) minimum and next higher number of nodes excluding the ends are 2, 4 respectively
 - (C) frequency produced may be $\frac{V}{3L}$
 - (D) frequency produced may be $\frac{3V}{2L}$ [V = Velocity of waves in the string]
- 430. In the figure shown an observer O_1 floats (static) on water surface with ears in air while another observer O_2 is moving upwards with constant velocity $V_1 = V/5$ in water. The source moves down with constant velocity $V_S = V/5$ and emits sound of frequency 'f'. The velocity of sound in air is V and that in water is 4V. For the situation shown in figure.

- (A) The wavelength of the sound received by ${\rm O_{\scriptscriptstyle 1}}$ is $\frac{4V}{5f}$
- (B) The wavelength of the sound received by O₁ is V/f
- (C) The frequency of the sound received by ${\rm O_2}$ is $\frac{21 {\rm f}}{16}$
- (D) The wavelength of the sound received by $\mathrm{O_2}\,\mathrm{is}\,\frac{16\mathrm{V}}{5\mathrm{f}}$
- **431.** There is a rectangular metal plate in which two cavities in the shape of rectangle and circle are made, as shown with dimensions. P and Q are centres of these cavities. On heating the plate, which of the following quantities increase?

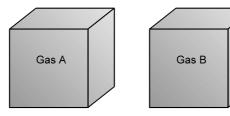
(A) πr^2

(B) ab

(C) R

(D) b

432.	Suppose that the volume of a certain ideal gas is to be doubled by one of the following processes				
	(1) isothermal expansi	on	(2) adiabatic expansio	n	
	(3) free expansion		(4) expansion at const	tant pressure	
	If E_1 , E_2 , E_3 and E_4 resfour processes, then :		es in average kinetic en	ergy of the molecules for the above	
	(A) $E_2 = E_3$	(B) $E_1 = E_3$	(C) $E_1 > E_4$	(D) $E_4 > E_3$	
433.	In Newton's law of coo	pling, $\frac{d\theta}{dt} = -k(\theta - \theta_0)$	the constant 'k' is propo	ortional to :	
	(A) A, surface area of	the body	(B) S, specific heat o	f the body	
	(C) $\frac{1}{m}$, m being mass	s of the body	(D) e, emmisivity of t	he body	
434.		I mass and bound equal v		em hollow) are made from the same to the same temperature and then left	
	1. sphere will have the h	nighest temperature	2. pryamid will have the	highest temperature.	
	3. cube will have the lov	vest temperature.	4. sphere will have the l	owest temperature.	
	5. pyramid will have the lowest temperature				
	Correct option will be:				
	(A) 2 and 3	(B) 3 and 1	(C) 1 and 5	(4) 2 and 4	
435.	Which of the following	functions represent a stat	ionary wave ? Here a, b a	and c are constants	
	(A) $y = a \cos(bx) \sin a$	(ct)	(B) y = a sin (bx) cos (ct)	
	(C) $y = a \sin(bx + ct)$		(D) $y = a \sin(bx + ct)$	+ a sin (bx - ct)	
436.	$Y(x, t) = \frac{0.8}{(4x + 5t)^2 + }$	$\frac{1}{5}^{m}$ represents a moving	ng pulse, where x, y are in	n metre and t in second :	
	(a) It is a non-periodic to	ravelling pulse	(b) It is traveling along -	-ve x-axis.	
	(c) Maximum displacer	nent is 0.16m	(d) Velocity of motion of	of pulse is -1.25 ms ⁻¹	
437.	negative x-direction wit	h a velocity of 300 m/s. A phase difference between	and B are two points 6m	d initial phase zero moves along the apart on the line of propagation of the imum difference in the displacement	
	(a) $\phi=\pi$	(b) $\phi=0$	(c) $\Delta = 0$	(d) $\Delta = 5 \times 10^{-5} m$	
438.	doubled:			cy $\upsilon_{_{\mathrm{m}}}$. If the temperature of body is	
	(a) the maximum intensity radiation will be at frequency 2 v_m				


(b) the maximum intensity radiation will be at frequency $\left.\upsilon\right._{\rm m}$ / 2.

(c) the total emitted energy will increase by a factor 16.(d) the total emitted energy will increase by a factor 2

SECTION: (C)-Passage Type Questions

PASSAGE 01:

Two closed identical conducting containers are found in the laboratory of an old scientist. For the verification of the gas some experiments are performed on the two boxes and the results are noted.

Experiment 1. When the two containers are weighed $W_A = 225 \, g$, $W_B = 160 \, g$ and mass of evacuated container $W_C = 100 g$.

Experiment 2. When the two containers are given same amount of heat same temperature rise is recorded. The pressure change found are

$$\Delta P_A = 2.5$$
 atm. $\Delta P_B = 1.5$ atm.

Required data for unknown gas:

Mono	He	Ne	Ar	Kr	Xe	Rd
(molar mass)	4g	20g	40 g	84 g	131 g	222 g
Dia	H ₂	F ₂	N ₂	O ₂	Cl₂	
(molar mass)	2g	19 g	28g	32g	71 g	

Identify the gas filled in the container A and B. (A) $\rm N_2$, Ne (B) He, H $_2$ (C) $\rm O_2$, Ar 439.

- (D) Ar, O_2
- Total number of molecules in 'A' (here N_A = avagadro number) 440.
 - (A) $\frac{125}{64}$ N_A
- (B) 3.125 N_A (C) $\frac{125}{28}N_A$
- (D) 31.25 N_A
- 441. The initial internal energy of the gas in container 'A', If the containers were at room temperature 300K initially
 - (A) 1406.25 cal
- (B) 1000 cal
- (C) 2812.5 cal
- (D) none of these

PASSAGE 02:

A pulse is started at a time t = 0 along the +x direction on a long, taut string. The shape of the pulse at t = 0 is given by function f(x) with

$$f(x) = \begin{cases} \frac{x}{4} + 1 & \text{for } -4 < x \le 0 \\ -x + 1 & \text{for } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

here f and x are in centimeters. The linear mass density of the string is 50 g/m and it is under a tension of 5N,

- 442. The shape of the string is drawn at t = 0 and the area of the pulse enclosed by the string and the x-axis is measured. It will be equal to
 - (A) 2 cm²
- (B) 2.5 cm²
- (C) 4 cm²
- (D) 5 cm²

443	The vertical displaceme (A) 0.75 cm	nt of the particle of the st (B) 0.5 cm	ring at x = 7 cm and t = 0 (C) 0.25 cm	.01 s will be (D) zero			
444.	The transverse velocity (A) –250 cm/s	of the particle at $x = 13 c$ (B) -500 cm/s	m and t = 0.015 s will be (C) 500 cm/s	(D)-1000 cm/s			
The one	parent fraguency of soun		AGE 03:	ation between source and cheenver			
This eff speed of second	The apparent frequency of sound detected by an observer depends on relative motion between source and observer. This effect is well known to you (known as Doppler effect). Consider a police Car moving on a straight road with a speed of 28 m/s emitting sound from its siren at 1200 Hz. This means that the siren is oscillating 1200 times a second. A man 'M' is standing on the road infront of the Car and another person 'N' is on the back side of the car. The siren sound is getting reflected from a building directly infront of the car. Man 'M' is standing between the car						
and the air 340	-	me car, N,M and buildin	g all to lie on a straight l	ine and take the speed of sound in			
445.		nd reaching M and N (dir (B) 0.260 m, 0.406 m		ectively are : (D) 0.306 m, 0.206 m			
446.	What is the frequency (A) 1208 Hz	of the sound reflected fr (B) 1111 Hz	om the building as deter (C) 1308 Hz	cted by man M ? (D) 1415 Hz			
447.	The apparent frequence (A) 1208 Hz	y of the reflected sound (B) 1111 Hz	as heard by the police i (C) 1308 Hz	n the car is : (D) 1415 Hz			
		PASS	AGE 04:				
rod in s 10 ⁻⁶ m.	uch a way that there are	e two nodes on either side $10^{11} \mathrm{Nm^{-2}}$, density = 80	de of the mid-point . Th	ationary waves are set up in the e amplitude of an antinode is 2 x O which is mid-point of the rod.			
448.	Velocity of wave in the (A) 5000 cm/s	rod is (B) 1000 m/s	(C) 500 m/s	(D) 5000 m/s.			
449.	Magnitude of maximum	n velocity of the point P i	s				
	(A) $\frac{\pi}{20}$ m/s	(B) $\frac{\pi}{20}$ cm/s	(C) $\frac{\pi}{40}$ m/s	(D) none of these			
450.	(A) $y_1 = 10^{-6} \sin (5\pi x - 2)$ (B) $y_1 = 10^{-6} \sin (-5\pi x)$ (C) $y_1 = 2 \times 10^{-6} \cos (5\pi x)$	t waves in the rod (in M. 25000 nt), $y_2 = 10^{-6} \sin (5000 \text{ nt})$, $y_2 = 10^{-6} \sin (5000 \text{ nt})$, $y_2 = 10^{-6} \sin (5000 \text{ nt})$, $y_2 = 2 \times 10^{-6} \cos (5000 \text{ nt})$, $y_2 = 2 \times 10^{-6} \cos (5000 \text{ nt})$, $y_2 = 2 \times 10^{-6} \cos (5000 \text{ nt})$	5πx + 25000 πt) η (5πx + 25000 πt) Ο ⁻⁶ cos (5πx + 25000 πt)				
Tura ala			AGE 05:				
-	$y_1(x, t) = A \cos (y_2(x, t)) = A \cos (x + t)$		quations.				
(All para	ameters are in MKS) :						
451.	How many times does a (A) 4	n observer hear maximur (B) 10	m intensity in one second (C) 6	? (D) 8			
452.	What is the speed of the (A) 200 m/s	e sound ? (B) 180 m/s	(C) 192 m/s	(D) 96 m/s			
453.	At $x = 0$ how many time (A) 192	s the amplitude of $y_1 + y_2$ (B) 48	is zero in one second? (C) 100	(D) 96			

PASSAGE 06:

For a thermodynamic process, the work done can be given as the area under the curve on a P-V diagram. One mole of a monatomic idealgas taken along the cycle ABCA as shown in the diagram

- 454. Select the correct statement:
 - (a) since area with in the cycle of the graph is always positive so work done is also always positive.
 - (b) The area with in the cycle gives complete information of work done in a process.
 - (c) only magnitude of work done is decided by area with in the cycle and complete information can be deduced if cycle is known.
 - (d) none of the above.
- 455. The net heat absorbed by the gas in given the cycle is (If cycle is clockwise)
- (b) PV/2
- (c) 2 PV
- The ratio of specific heat (C₁) in the process CA to the specific heat (C₂) in the process BC is] 456.
 - (a) 2
- (b) 5/3

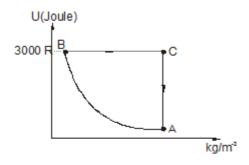
(d) none

PASSAGE 07:

A monoatomic ideal gas sample is given heat Q in a reversible process. One fourth of this heat is used as work done by the gas due to expansion and rest is used for increasing its internal energy.

- 457. The molar specific heat for the gas in this process is
 - (a) $\frac{3}{2}$ R
- (b) $\frac{R}{2}$

- (c) 2R
- (d) 3R
- 458. The equation of process in terms of volume and temperature is

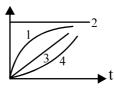

(a)
$$\frac{V}{T}$$
 = constant

(a)
$$\frac{V}{T} = \text{constant}$$
 (b) $\frac{V}{\sqrt{T}} = \text{constant}$ (c) VT = constant (d) $V\sqrt{T} = \text{constant}$

(d)
$$V\sqrt{T} = constant$$

PASSAGE 8:

The figure shows the variation of potential energy (U) of a 2 moles of Argon gas with its density in a cyclic process ABCA. The gas was initially in the state A whose pressure and temperature are $P_A = 2$ atm $T_A = 300$ K respectively. It is also stated that the path AB is a rectangular hyperbola and the internal energy of the gas at state C is 3000 R. Based on the above information answer the following questions.



- 459. The heat supplied to the gas in the process AB is
 - (a) 700 R
- (b) 3500 R
- (c) 4400 R
- (d) 1600 R

- 460. Heat supplied in the process CA is
 - (a) -1400 R
- (b) 1400 R
- (c) 2100 R
- (d) -2100 R

SECTION: (D) - Matrix Match

461. A ball has surface temperature T initially at time t = 0, that is less than surrounding constant temperature T_0 . On the vertical axis of the graph shown has either thermal energy radiated/absorbed per unit time or total energy radiated/absorbed till time t by the ball. Correctly match the curves marked in the graph:

- (A) Thermal energy emitted per unit time
 (B) Thermal energy absorbed per unit time
 (C) Total energy emitted till time t
 (D) Total energy absorbed till time t
 (C) Total energy absorbed till time t
- **462.** Match the information given in **Column-I** with that given in **Column-II**. Note that any information in column-II may have more than one matching options in column-II

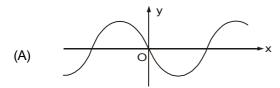
	Column I (Nature of wave)		Column II (Properties)
(A)	Transverse progressive wave	(P)	Amplitude of all particles are same
(B)	Longitudinal progressive wave	(Q)	Phase of all particles may be same
(C)	Transverse standing wave	(R)	May occur in gases
(D)	Longitudinal standing wave	(S)	KE and PE of a small element may
			be maximum simultaneously

463. A source is emitting a sound of frequency fs and moving with a velocity vs. An observer at some distance from the source has velocity v0 and heard sound of frequency f0. Velocity of medium is vm,, velocity of sound w.r.t to medium is V.

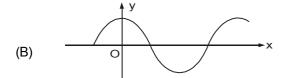
	COLUMN-I	COL	UMN-II
P)	vs = v0 = 0 and vm has direction from source to observer	1)	fs > f0
Q)	vm has direction from source to observer and vs is towards observer $v0 = 0$	2)	fs < f0
R)	vm has direction from source to observer and at the time of generating pulse vs is perpendicular to the line joining source and observer v0 = 0	3)	fs = f0
S)	If vm = 0 and v0 & vs are moving in the same direction joining		
	of the source and observer	4)	Whether f0 is greater than fs or less than fs will depend on magnitude of vs and v0 along the line

464.	Column I		Colu	Column II		
	(A)	Pitch	(p)	Number of harmonics present in the sound		
	(B) Loudness (C) Quality (D) wave front		(q)	Intensity		
			(r)	Frequency		
			(s)	Wave form		
			(t)	locus of points vribrating in a phase		

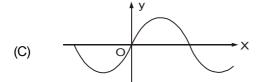
 $y = 10 \sin (2\pi x - 120t) + 8 \cos (118t - 29/30\pi x)$

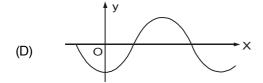

(D)

465. Column-I Column II $y = 4 \sin (5x - 4t) + 3 \cos (4t - 5x + \pi/6)$ (A) (p) Particles at every position are performing SHM $y = 10 \cos\left(t - \frac{x}{330}\right) \sin(100)\left(t - \frac{x}{330}\right)$ (B) (q) Equation of travelling wave $y = 10 \sin (2\pi x - 120t) + 10 \cos (120t + 2\pi x)$ Equation of standing wave (C) (r)


(s)

Equation of Beats


466. For four sine waves, moving on a string along positive x direction, displacement-distance curves (y - x curves) are shown at time t = 0. In the right column, expressions for y as function of distance x and time t for sinusoidal waves are given. All terms in the equations have general meaning. Correctly match y - x curves with corresponding equations.


(p) $y = A \cos (\omega t - kx)$

(q) $y = -A \cos(kx - \omega t)$

 $y = A \sin(\omega t - kx)$ (r)

 $y = A \sin(kx - \omega t)$ (s)

467. Column-I

- (A) Atight string is fixed at both ends and (p) sustaining standing wave (q)
- (B) Atight string is fixed at one end and free at the other end
- A tight string is fixed at both ends and (C) vibrating in four loops
- (D) A tight string is fixed at one end and free (s) at the other end, vibrating in 2nd mode of vibration.

Column-II

At the middle, antinode is formed in odd harmonic

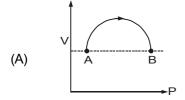
At the middle, node is formed in even harmonic

The frequency of vibration is 300% more than its fundamental frequency

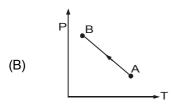
Phase difference between SHMs of any two particles will be either π or zero.

The frequency of vibration is 400% more than (t) fundamental frequency.

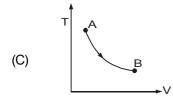
468. An ideal monoatomic gas undergoes different types of processes which are described in column–I. Match the corresponding effects in column-II, The letters have usual meaning.

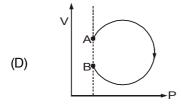

(r)

	Column-I		Column-II
(A)	$P = 2V^2$	(p)	If volume increases then temperature will also increase.
(B)	PV ² = Constant	(q)	If volume increases then temperature will decrease.
(C)	$C = C_v + 2R$	(r)	For expansion, heat will have to be supplied to the gas.
(D)	$C = C_{v} - 2R$	(s)	If temperature increases then work done by gas is positive


469. A sample of gas goes from state A to state B in four different manners, as shown by the graphs. Let W be the work done by the gas and AU be change in internal energy along the path AB. Correctly match the graphs with the statements provided.

Column-I


Column-II


Both W and AU are positive (p)

(q) Both W and ΔU are negative

W is positive whereas ∧U is negative (r)

(s) W is negative whereas ∧U is positive

470. Match the information given in Column-I with that given in Column-II. Note that any information in column-I may have more than one matching options in column-II

Column I (Nature of wave)

Column II (Properties)

- (A) Transverse progressive wave
- (P) Amplitude of all particles are same
- (B) Longitudinal progressive wave
- (Q) Phase of all particles may be same
- (C) Transverse standing wave
- May occur in gases (R)
- (D) Longitudinal standing wave
- (S) KE and PE of a small element may be maximum simultaneously
- 471. Match the phenomenon to its property
 - (A) **Beats**

- (P) apparent change in pitch
- Standing wave (B)
- frequencies are in unison (Q)
- (C) Doppler effect
- (R) modification of intensities occur periodically when the waves interfere in same direction

(D) Resonance

- (S) superposition of two similar waves travelling in opposite direction
- 472. For a cuboid made of a certain material, coefficient of expansion along it's length was found to be 2 x 10⁻⁵ K⁻¹. Then match the columns appropriately:

COL	ı	J٨	ΛN	ı

COLUMN II

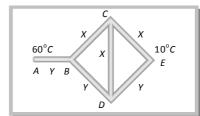
(A) Coefficient of expansion along breadth (P) 1 x 10 -5 K-1

(B) Coefficient of expansion along height (Q) 2 x 10 -5 K-1

(C) Coefficient of areal expansion (R) 4 x 10 -5 K-1

(D) Coefficient of volume expansion (S) 6 x 10 -5 K-1 8 x 10 ⁻⁵ K⁻¹ 473. Bowling point of water in a certain scale was found to be 300 units. Melting point of water in the same scale was found to be -200 units. Then match the temperatures in in celcius scale (in column I) with corresponding temperatures in that scale (in column II)

	COLUMNI	COLUMN II
(A)	20°C	(P) 50
(B)	75°C	(Q) -100
(C)	60°C	(R) 175
(D)	50°C	(S) 100


474. One mole of an ideal monoatomic gas undergoes a process $PV^{1/2} = C$, where C is a constant.

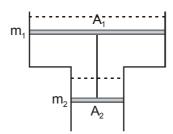
	COLUMNI	COLU	MN II
(A)	Heat given to the gas to increase the temperature of the gas by 100°C	(i)	150 R
(B)	Work done on the gas to change the volume from V_0 to $2V_0$	(ii)	$\frac{7R}{2}$
(C)	Molar heat capacity of the gas	(iii)	350 R
(D)	Change in internal energy of gas when the temperature of the gas is increased by 100°C	(iv)	$2c\sqrt{v_0}[\sqrt{2}-1]$

475. For one mole of a monoatomic ideal gas match the following:

	COLUMNI	COLC	NALLA II
(A)	Isothermal bulk modulus	(i)	$-\frac{RT}{V^2}$
(B)	Adiabatic bulk modulus	(ii)	$-\frac{5P}{3V}$
(C)	Slope of P–V graph in isothermal process	(iii)	$\frac{T}{V}$
(D)	Slope of PV graph in adiabatic process	(iv)	None of these

476. Three rods of material *X* and three rods of material *Y* are connected as shown in figure. All are identical in length and cross-sectional area. If end *A* is maintained at 60°*C*, end *E* at 10°*C*, thermal conductivity of *X* is 0.92 *cal/* sec-cm-°*C* and that of *Y* is 0.46 *cal/sec-cm-*°*C*, then match the columns appropriately (Assume steady state):

	COLUMNI	COLUM	N II
(A)	T _R (in °C)	(P)	30
(B)	T _C (in °C)	(Q)	20
(C)	T _D (in °C)	(R)	10
(D)	Heat through CD (in Joules)	(S)	0


depend. Match the columns: Column I Column II (A) Bimetallic Strip (P) Radiation from a hot body (B) Steam Engine (Q) **Energy conversion** (C) Incandescent lamp (R) Melting (D) Electric fuse (S) Thermal expansion of solids 478. Column I Column II (P) (A) A perfect reflecting body absorbs radiation A perfect black body reflects radiation (B) (Q) (C) An ordinary smooth body (R) emits radiations (D) An ordinary rough body (S) transfers heat 479. When a wave is transmitted from denser to rarer medium: Column II Column I (A) (P) will remain same amplitude of wave (B) wavelength of wave (Q) will increase speed of wave will decrease (C) (R) (D) may increase or decrease frequency (S) 480. From state A (pressure P, volume V) an ideal gas is taken to the state B (pressure P, volume 2V) along a straight line path in P-V diagram. Column I Column II (A) Workdone by gas in process A to B exceeds the workdone by it if (P) isobar system was taken from A to B along (B) In T-V diagram, path AB becomes part of (Q) parabola In moving from A to B temperature T first (C) (R) decreases and then increases (D) In moving B to A along an isotherm, temperature T first (S) none of these

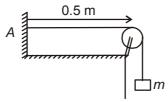
Column I gives some devic4es and column II gives some processes on which the functioning of these devices

477.

SECTION: (E) - Integer Type

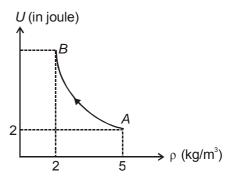
481. Consider a vertical tube open at both ends. The tube consists of two parts, each of different cross-sections and each part having a piston which can move smoothly in respective tubes. The two pistons are joined together by an inextensible wire. The combined mass of the two piston is 5 kg and area of cross-section of the upper piston is 10 cm² greater than that of the lower piston. Amount of gas enclosed by the pistons is one mole. When the gas is heated slowly, pistons move by 50 cm. Find rise in the temperature of the gas, in the form $\frac{X}{R}$ K where R is universal gas constant. Use $g = 10 \text{ m/s}^2$ and outside pressure $g = 10^5 \text{ N/m}^2$. Fill value of X in the answer sheet.

- 482. A straight line source of sound of length L = 10m, emitts a pulse of sound that travels radially outward from the source. What sound energy (in mW) is intercepted by an acoustic cylindrical detector of surface area 2.4 cm², located at a perpendicular distance 7m from the source. The waves reach perpendicularly at the surface of the detector. The total power emitted by the source in the form of sound is 2.2×10^4 W. (Use $\pi = 22/7$)
- **483.** A tuning fork produces 4 beats per second with another tuning fork of frequency 512 Hz. The first one is now loaded with a little wax and the beat frequency is found to increase to 6 per second. What was the original frequency of the tuning fork?
- **484.** Consider the three waves represented by

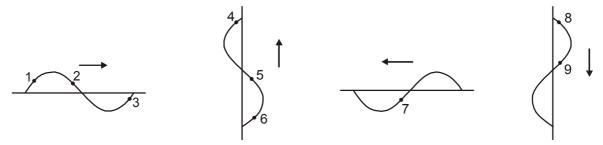

$$y_1 = 3\sin(kx - \omega t)$$

$$y_2 = 3\sin\left(kx - \omega t + \frac{2\pi}{3}\right)$$

and
$$y_3 = 3\sin\left(kx - \omega t + \frac{4\pi}{3}\right)$$


What is the amplitude of resultant of waves at x = 0?

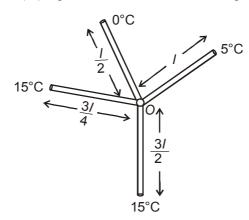
A string having length 0.5 m fixed at one end and other end is connected to a block of mass m = 2 kg as shown in figure. The string is set into vibrations which is represented by $Y = 4 \sin\left(\frac{\pi x}{5}\right) \cos\left(50\pi t\right)$ where x and y are in cm and t is in second. The number of antinodes between point A and the fixed pully is 2n, find n.



486. Figure shows the variation of the internal energy U with the density ρ of an ideal monoatomic gas for a thermodynamic process AB. Process AB is a part of rectangular hyperbola. Find the work done

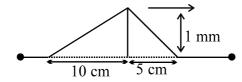
(in joule) by gas in process AB.

- 487. The equation of a standing wave propagating along a string fixed at both ends is given by $y = (4 \text{ cm}) \sin(0.314 \text{ cm}^{-1})x \cdot \cos(3.14 \text{ s}^{-1})t$. The linear mass density of the string is 10 g/cm. The average power transmitted through the string is $n \times 10^{-4}$ W. Find n.
- **488.** Consider the transverse mechanical waves shown in the figure. Points are marked on the wave. Arrow shows the direction of waves motion.

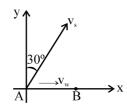


Out of the nine particles marked how many are moving towards their respective mean positions at this instant?

- **489.** Three resonance frequencies of an organ pipe are at 1190, 1360 and 1530 Hz. If velocity of sound in the air is 340 m/s, Find the length of the pipe
- 490. One end of a uniform rod of length 1m is placed in bolling water while its other end is placed in melting ice. A point P ont he rod is maintained at a constant temperature of 800°C. The mass of steam produced per second is equal to the mass of ice melted per second. If specific latent heat of steam is 7 times the specific latent heat of ice, the distance of P from the steam chamber must be 1/x mtr.find the value of x.
- 491. A source s having a detector D moving towards a wall with a certain velocity detects 9 beats/s. On doubling the velocity of the source, the detector D detects 20 beats /s. What is the original frequency (in Hz) of the sound emitted by the source ? (Take speed of sound as 330 m/s)

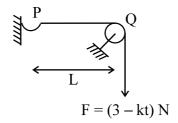

492. All the rods in given arrangement are made up of same material and have same cross-section. Find the temperature of junction *O* (in °C). (Neglect the transfer of heat through radiations and convection)

- 493. A source of sound emitting sound of frequency 10 kHz is moving towards a moving wall with speed 32 m/s. The wall is moving towards source with speed 64 m/s. Find the approximate wavelength (in cm) of wave reflected from the wall. Take speed of sound in air equal to 332 m/s
- 494. One mole of an ideal monoatomic gas is taken from state A to state B through the process $P = \frac{3}{2} T^{1/2}$. It is found that its temperature increases by 100 K in this process. Now it is taken from state B to C through a process for which internal energy is related to volume as $U = \frac{1}{2} V^{1/2}$. Find the total work performed by the gas (in Joule), if it is given that volume at B is 100 m³ and at C it is 1600 m³. [Use R = 8.3 J/mol-K]
- 495. Assuming a particle to have the form of a sphere and to absorb all incident light, the radius (in μ m) of a particle for which its gravitational attraction to the Sun is counterbalanced by the force that light exerts on it is X. Find 10X. The power of light radiated by the Sun equals P = 4 × 10²⁶ W and the density of the particle is ρ = 1.0 g/cm³.


[Use G =
$$\frac{20}{3}$$
 \times 10⁻¹¹ Nm²/kg² ; π = $\frac{25}{8}$ and mass of the Sun = 2 \times 10³⁰ kg]

496. The kinetic energy of pulse travelling in a taut string is K mJ. Find the value of 100K. Given T = 10 N and μ = 0.1 kg/m.

497. In the figure shown a source of sound of frequency 510 Hz moves with constant velocity $v_s = 20 \text{ m/s}$ s in the direction shown. The wind is blowing at a constant velocity $v_w = 20 \text{ m/s}$ towards an observer who is at rest at point B. Find the frequency (in Hz) detected by the observer corresponding to the sound emitted by the source at initial position A.


[Speed of sound relative to air = 330 m/s]

498. We would like to increase the length of a 15 cm long copper rod of cross-section 4 mm² by 1 mm. The energy absorbed by the rod if it is heated is E_1 . The energy absorbed by the rod if it is stretched slowly is E_2 . Then find E_1/E_2 .

[$^{\circ}$ Various parameters of Copper are : Density = 9×10^3 kg/m³; Thermal co-efficient of linear expansion = 16×10^{-6} K⁻¹, Young's modulus = 135×10^9 Pa, Specific heat = 400 J/kg-K]

- 499. A long uniform string of mass density 0.1 kg/m is stretched with a force of 40 N. One end of the string (x = 0) is oscillated transversely (sinusoidally) with an amplitude of 0.02 m and a period of 0.1 sec, so that travelling waves in the + x direction are set up.
 - (a) What is the velocity of the waves?
- 500. In the given figure, a string of linear mass density 3×10^{-2} kg/m and length L = 1 m, is stretched by a force F = (3 kt) N, where 'k' is a constant and 't' is time in sec. At the time t = 0, a pulse is generated at the end P of the string. Find the value of k (in N/s) if the value of force becomes zero as the pulse reaches point Q.

AnswerKey				
Qs.	Ans.	Qs.	Ans.	
	-	451	A	
402	A	452	A	
403	C	453	C	
404	A	454	C	
405	В	455	A	
406	C	456	В	
400	A	457	С	
407	В	457	В	
409 410	В	459	B D	
	D	460		
411	A	461	A-(P),B-(Q),C-(S),D-(R)	
412	В	462	A-(PS),B-(PRS),C-(CQ),D-(QR)	
413	В	463	A-(3),B-(2),C-(3),D-(4)	
414	A	464	A-(r),B-(q),C-(qs),D-(t)	
415	A	465	A-(p,q),B-(s),C-(p,r),D-(s)	
416	С	466	A-(r),B-(p),C-(s),D-(q)	
417	ACD	467	A-(p,q,s),B-(r,s),C-(q,r,s),D-(r,s,t)	
418	BC	468	A-(p,r,s),B-(q),C-(p,r,s),D-(q,r)	
419	abcd	469	A-(s),B-(q),C-(r),D-(q)	
420	ABCD	470	A-(P,S),B-(P,R,S),C-(Q),D-(Q,R)	
421	ABD	471	A-(R),B-(S),C-(P),D-(Q)	
422	AD	472	A-(Q),B-(Q),C-(R),D-(S)	
423	ABCD	473	A-(Q),B-(R),C-(S),D-(P)	
424	BD	474	A-(R),B-(P),C-(P),D-(R)	
425	ВС	475	A-(iv),B-(iv),C-(i),D-(ii)	
426	D	476	A-(P),B-(Q),C-(Q),D-(S)	
427	AB	477	A-(S),B-(Q),C-(P,Q),D-(Q,R)	
428	ABD	478	A-(Q,S),B-(P,R,S),C-(P,Q,R,S),D-	
			(P,Q,R,S)	
429	AD	479	A-(Q),B-(Q),C-(Q),D-(P)	
430	ACD	480	A-(S),B-(Q),C-(S),D-(S)	
431	ABCD	481	75	
432	BD	482	12	
433	AC	483	508HZ	
434	С	484	0	
435	ABD	485	5	
436	ABCD	486	2	
437	AD	487	2	
438	AC	488	4	
439	D	489	1	
440	В	490	9	
441	С	491	41	
442	В	492	7	
443	С	493	2	
444	Α	494	435	
445	Α	495	6	
446	С	496	15	
447	D	497	525	
448	D	498	500	
449	Α	499	20	
450	Α	500	20	