Shortcuts and Important Results to Remember

1
$$||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$$

Thus, $|z_1| + |z_2|$ is the greatest possible value of $|z_1 + z_2|$ and $||z_1| - |z_2|$ is the least possible value of $|z_1 + z_2|$.

If $\left| z \pm \frac{b}{z} \right| = a$, then the greatest and least values of $\left| z \right|$ are

$$\frac{a + \sqrt{(a^2 + 4|b|)}}{2}$$
 and $\frac{-a + \sqrt{(a^2 + 4|b|)}}{2}$, respectively.

$$\left| z_1 + \sqrt{(z_1^2 - z_2^2)} \right| + \left| z_2 - \sqrt{(z_1^2 - z_2^2)} \right|$$

$$= \left| z_1 + z_2 \right| + \left| z_1 - z_2 \right|$$

$$|z_1 + z_2| = |z_1| + |z_2| \Leftrightarrow \arg(z_1) = \arg(z_2)$$

i.e. z_1 and z_2 are parallel.

$$|z_1 + z_2| = |z_1| - |z_2| \Leftrightarrow \arg(z_1) - \arg(z_2) = \pi$$

6
$$|z_1 + z_2| = |z_1 - z_2| \Leftrightarrow \arg(z_1) - \arg(z_2) = \pm \pi/2$$

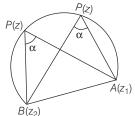
7 If $|z_1| = |z_2|$ and arg (z_1) + arg (z_2) = 0, then z_1 and z_2 are conjugate complex numbers of each other.

The equation $|z-z_1|^2+|z-z_2|^2=k$, $k\in R$ will represent a circle with centre at $\frac{1}{2}(z_1+z_2)$ and radius is $\frac{1}{2}\sqrt{2k-|z_1-z_2|^2}$ provided $k\geq \frac{1}{2}|z_1-z_2|^2$.

- **9** Area of triangle whose vertices are z, iz and z + iz, where $i = \sqrt{-1}$, is $\frac{1}{2}|z|^2$.
- 10 Area of triangle whose vertices are z, ωz and $z + \omega z$ is $\frac{\sqrt{3}}{4} |z|^2$, where ω is cube root of unity.
- 11 arg (z) arg (-z) = π or π according as arg (z) is positive or negative.

12 If $\arg\left(\frac{z-z_1}{z-z_2}\right) = \alpha$ (fixed), then the locus of z is a segment

of circle.



If arg $\left(\frac{z-z_1}{z-z_2}\right) = \pm \pi/2$, the locus of z is a circle with z_1

and z_2 as the vertices of diameter.

- 14 If $\arg\left(\frac{z-z_1}{z-z_2}\right) = 0$ or π , the locus of z is a straight line passing through z_1 and z_2 .
- 15 If three complex numbers are in AP, they lie on a straight line in the complex plane.
- 16 If three points z_1 , z_2 , z_3 connected by relation $a z_1 + b z_2 + c z_3 = 0$, where a + b + c = 0, the three points are collinear.
- 17 If z_1 , z_2 , z_3 are vertices of a triangle, its centroid

$$z_0 = \frac{z_1 + z_2 + z_3}{3}, \text{ circumcentre } z_1 = \frac{\sum |z_1|^2 (z_2 - z_3)}{\sum \overline{z}_1 (z_2 - z_3)},$$

orthocentre
$$z = \frac{\sum \bar{z}_1(\bar{z}_2 - \bar{z}_3) + \sum |z_1|^2 (z_2 - z_3)}{\sum (z_1\bar{z}_2 - \bar{z}_1z_2)}$$

and its area =
$$\frac{1}{4} \begin{vmatrix} z_1 & \bar{z}_1 & 1 \\ z_2 & \bar{z}_2 & 1 \\ z_3 & \bar{z}_3 & 1 \end{vmatrix}$$
.

18 If $|z_1| = n_1$, $|z_2| = n_2$, $|z_3| = n_3$, ..., $|z_m| = n_m$,

then
$$\left| \frac{n_1^2}{z_1} + \frac{n_2^2}{z_2} + \frac{n_3^2}{z_3} + \dots + \frac{n_m^2}{z_m} \right| = \left| z_1 + z_2 + z_3 + \dots + z_m \right|.$$