Time Allowed: 11/2 Hours Max. Marks: 50

Notes: 1. All questions are compulsory.

2. Marks have been indicated against each question.

1. Differentiate
$$\sin^{-1}(x\sqrt{x})$$
, $0 \le x \le 1$ w.r.t. x. (1)

2. Find the slope of the tangent to the curve :

$$y = x^3 - 3x + 2$$
 at the point whose x-co-ordinate is 3. (1)

3. Prove that
$$\int_{-\pi/4}^{\pi/4} \sin^2 x \, dx = \frac{\pi}{4} - \frac{1}{2} \,. \tag{2}$$

4. Show that $(x^2 + xy) dy = (x^2 + y^2) dy$ is homogeneous. **(2)**

5. If
$$y = \tan^{-1} \left[\frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{1 + x^2 + \sqrt{1 - x}} \right]$$
, then prove that $\frac{dy}{dx} \cdot \sqrt{1 - x^4} = x$. (2)

6. A man 2 metres heigh walks at a uniform speed of 5 km/hr away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases. **(4)**

7. Find the equations of the normals to the curve $y = x^3 + 2x + 6$, which are parallel to the line x + 14y + 4 = 0. **(4)**

8. Evaluate:
$$\int x \tan^{-1} x \, dx.$$
 (4)

9. Prove that
$$\int_0^{\pi} \frac{x \tan x}{\sec x \csc x} dx = \frac{\pi^2}{4}.$$
 (4)

10. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the straight line $\frac{x}{3} + \frac{y}{2} = 1$. **(4)**

11. Solve
$$(1 + e^{x/y}) dx + e^{x/y} \left(1 - \frac{x}{y}\right) dy = 0.$$
 (4)

12. Prove that the semi-vertical angle of the right-circular cone of given volume and least covered surface area is $\cot^{-1}\sqrt{2}$. (6)

13. Evaluate $\int_{1}^{4} f(x) dx$; when f(x) = |x - 1| + |x - 2| + |x - 3|. **(6)**

14. Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide that area of the square bounded by x = 0, x = 4 and y = 0 into three equal parts. **(6)**

Answers

1.
$$\frac{3}{2}\sqrt{\frac{x}{1-x^3}}$$
.

2. 24.

6.
$$\frac{5}{2}$$
 km/h.

7.
$$x + 14y - 254 = 0$$
, $x + 14y + 86 = 0$.

8.
$$(x^2+1) \tan^{-1} \frac{x}{2} - \frac{x}{2} + c$$
.

10.
$$\frac{3}{2}(\pi - 2)$$
 sq. units. **11.** $y e^{x/y} + x = c$.

11.
$$y e^{x/y} + x = c$$

13.
$$\frac{19}{2}$$
.