Shortcuts and Important Results to Remember

- 1 '0' is neither positive nor negative even integer, '2' is the only even prime number and all other prime numbers are odd, '1' (i.e. unity) is neither a composite nor a prime number and 1, -1 are two units in the set of integers.
- **2** (i) If a > 0, b > 0 and $a < b \implies a^2 < b^2$
 - (ii) If a < 0, b < 0 and $a < b \implies a^2 > b^2$
 - (iii) If $a_1, a_2, a_3, ..., a_n \in R$ and $a_1^2 + a_2^2 + a_3^2 + ... + a_n^2 = 0$ $\Rightarrow a_1 = a_2 = a_3 = \dots = a_n = 0$
- 3 (i) Max $(a, b) = \frac{1}{2}(|a+b|+|a-b|)$
 - (ii) Min $(a, b) = \frac{1}{2}(|a+b|-|a-b|)$
- 4 If the equation f(x) = 0 has two real roots α and β , then f'(x) = 0 will have a real root lying between α and β .
- **5** If two quadratic equations P(x) = 0 and Q(x) = 0 have an irrational common root, both roots will be common.
- 6 In the equation $ax^2 + bx + c = 0$ [a, b, c $\in R$], if a + b + c = 0, the roots are 1, $\frac{c}{a}$ and if a - b + c = 0, the roots are -1 and $\frac{c}{-1}$.
- 7 The condition that the roots of $ax^2 + bx + c = 0$ may be in the ratio p:q, is

 $pq b^2 = ac (p+q)^2$ (here, $\alpha : \beta = p : q$)

 $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} = \pm \sqrt{\frac{b^2}{ac}}$

- (i) If one root of $ax^2 + bx + c = 0$ is *n* times that of the other, then $nb^2 = ac (n + 1)^2$, here $\alpha : \beta = n : 1$.
- (ii) If one root of $ax^2 + bx + c = 0$ is double of the other here n = 2, then $2b^2 = 9ac$.
- 8 If one root of $ax^2 + bx + c = 0$ is *n*th power of the other, then $(a^n c)^{\frac{1}{n+1}} + (ac^n)^{\frac{1}{n+1}} = -b$.
- 9 If one root of $ax^2 + bx + c = 0$ is square of the other, then $a^{2}c + ac^{2} + b^{3} = 3abc$.
- 10 If the ratio of the roots of the equation $ax^2 + bx + c = 0$ is $Ax^2 + Bx + C = 0$ and equal to the ratio of the roots of $a \neq 0$, $A \neq 0$, then $\frac{b^2}{AC} = \frac{B^2}{AC}$
- 11 If sum of the roots is equal to sum of their squares then $2ac = ab + b^2.$
- 12 If sum of roots of $ax^2 + bx + c = 0$ is equal to the sum of their reciprocals, then

 $2a^{2}c = ab^{2} + bc^{2}$, i.e. ab^{2} , bc^{2} , ca^{2} are in AP or $\frac{2a}{b} = \frac{b}{c} + \frac{c}{a}$ i.e. $\frac{c}{a}, \frac{a}{b}, \frac{b}{c}$ are in AP.

- 13 Given, $y = ax^2 + bx + c$
 - (i) If a > 0, $y_{min} = \frac{4ac b^2}{4a}$
 - (ii) If a < 0, $y_{\text{max}} = \frac{4ac b^2}{4a}$
- 14 If α , β are the roots of $ax^2 + bx + c = 0$ and $S_n = \alpha^n + \beta^n$, then $aS_{n+1} + bS_n + cS_{n-1} = 0$
- 15 If D_1 and D_2 are discriminants of two quadratics P(x) = 0and Q(x) = 0, then
 - (i) If $D_1D_2 < 0$, then the equation $P(x) \cdot Q(x) = 0$ will have two real roots
 - (ii) If $D_1D_2 > 0$, then the equation $P(x) \cdot Q(x) = 0$ has either four real roots or no real root.
 - (iii) If $D_1D_2 = 0$, then the equation $P(x) \cdot Q(x) = 0$ will have
 - (a) two equal roots and two distinct roots such $D_1 > 0$ and $D_2 = 0$ or $D_1 = 0$ and $D_2 > 0$.
 - (b) only one real solution such that $D_1 < 0$ and $D_2 = 0$ or $D_1 = 0$ and $D_2 < 0$.
- **16** If a > 0 and $x = \sqrt{a + \sqrt{a + \sqrt{a + \dots + \infty}}}$, then $x = \frac{1 + \sqrt{(4a + 1)}}{2}$
- 17 If $a_1, a_2, a_3, \dots, a_n$ are positive real numbers, then least value of $(a_1 + a_2 + a_3 + ... + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_2} + ... + \frac{1}{a_n} \right)$
 - (i) Least value of $(a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) = 3^2 = 9$
 - (ii) Least value of $(a+b+c+d)\left(\frac{1}{2}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)=4^2=16$
- 18 Law of Proportions If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \dots$, then each of

these ratios is also equal to

- (i) $\frac{a+c+e+...}{b+d+f+...}$
- (ii) $\left(\frac{pa^n + qc^n + re^n + \dots}{pb^n + qd^n + rf^n + \dots}\right)^{1/n}$ (where, $p, q, r, \dots, n \in R$)
- (iii) $\frac{\sqrt{ac}}{\sqrt{bd}} = \frac{\sqrt[n]{(ace \dots)}}{\sqrt[n]{(bdf \dots)}}$
- 19 Lagrange's Mean Value Theorem Let f(x) be a function defined on [a, b] such that

(i)
$$f(x)$$
 is continuous on $[a, b]$ and

(ii) f(x) is derivable on (a, b), then $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

20 Lagrange's Identity If
$$a_1$$
, a_2 , a_3 , b_1 , b_2 , $b_3 \in R$, then
$$(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2$$

$$= (a_1b_2 - a_2b_1)^2 + (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2$$
or $(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2$

$$= \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}^2 + \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}^2 + \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}^2$$

Remark

If
$$(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) \le (a_1b_1 + a_2b_2 + a_3b_3)^2$$
,
then
$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}.$$

21 Horner's Method of Synthetic, Division When, we divide a polynomial of degree ≥ 1 by a linear monic polynomial, the quotient and remainder can be found by this method. Consider

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_n$$

where $a_0 \neq 0$ and $a_0, a_1, a_2, ..., a_n \in R$.

Let $g(x) = (x - \alpha)$ be a linear monic polynomial $\alpha \in R$. When $g(x) \mid f(x)$; we can find quotient and remainder as follows:

α	a_0	a ₁	a_2	 a_n
	0	αa_0	$b_1\alpha$	αb_{n-1}
		a ₁	 a ₂	$a_n + \alpha b_{n-1} = 0$
	a ₀	+ αa ₀	$+b_1\alpha$	
	$=b_0$	$= b_1$	$= b_2$	

 $f(x) = (x - \alpha) (b_0 x^{n-1} + b_1 x^{n-2} + b_2 x^{n-3} + \dots + b_{n-1})$ e.g. Find all roots of $x^3 - 6x^2 + 11x - 6 = 0$.

(x-1) is a factor of $x^3-6x^2+11x-6$, then

$$\therefore$$
 $x^3 - 6x^2 + 11x - 6 = (x - 1)(x^2 - 5x + 6)$

$$= (x - 1)(x - 2)(x - 3)$$

Hence, roots of $x^3 - 6x^2 + 11x - 6 = 0$ are 1, 2 and 3.