SAMPLE PAPER

SOLVED

MATHEMATICS

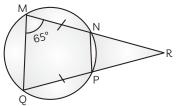
(STANDARD)

Time Allowed: 90 Minutes

Maximum Marks: 40

General Instructions: Same instructions as given in the Sample Paper 1.

SECTION - A


16 marks

(Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.)

- 1. A quadratic polynomial with sum and product of zeroes as $-\frac{1}{4}$ and $\frac{1}{4}$, respectively,
 - (a) $4x^2 x + 1$ (b) $4x^2 + x + 1$
 - (c) $4x^2 + x 1$
- (d) $4x^2 x 1$
- 2. In a \triangle ABC right-angled at B, AB : AC = 1 : 2. Then the value of $\frac{\cot A + \tan C}{\sin B + \cos B}$ is:
- (b) $\frac{\sqrt{3}+1}{2}$
- (c) $\frac{2\sqrt{2}-\sqrt{3}}{2}$
- (d) $\sqrt{3} 1$
- **3.** The value of $\sin^2 60^\circ + 2 \tan 45^\circ \cos^2 30^\circ$ is :
- (c) 2
- 4. What will be the decimal expansion of the rational number $\frac{27}{1250}$?
 - (a) 0.0125
- (b) 0.0021
- (c) 0.0315
- (d) 0.0216
- 5. What is the point on y-axis which is equidistant from the points (2, 3) and (-4, 1)?
 - (a) (0, -1)
- (b) (0, 1)
- (c) (0, 2)
- (d) (0, -2)

- 6. Ramesh draws a card randomly from a deck of 52 cards. The probability that this card bears an even number in black is:

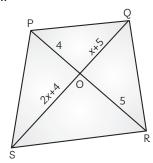
- 7. As shown in the figure, MN = QP and on producing MN and QP, they intersect at R. If MQ || NP and \angle NMQ = 65°, calculate \angle R.

- (a) 30°
- (b) 25°
- (c) 35°
- (d) 50°
- 8. Find a relation between a and b, for which the system of equations ax + 2y = 7 and 3x +by = 16 represents parallel lines.
 - (a) a b = 5
- (b) a + 2b = 7
- (c) ab = 6
- (d) a = 2b
- **9.** Calculate the value of $\alpha^2 \beta^2$, where α , β are zeroes of the polynomial $x^2 - 5x + 6$.
 - (a) 0
- (b) 2
- (c) 7
- (d) 5.

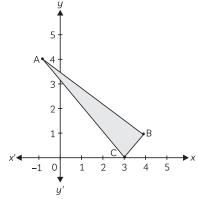
- **10.** A number is selected from the numbers 1, 2 ..., 15. What is the probability that it is a multiple of 4?
 - (a) $\frac{7}{15}$
- (b) $\frac{2}{5}$
- (c) $\frac{1}{5}$
- (d) $\frac{2}{15}$
- **11.** From where does the graph of the equation x y = 0 passes?
 - (a) x-axis
 - (b) y-axis
 - (c) Origin
 - (d) Data insufficient
- **12.** What is the value of $\beta \alpha$, if $\sin \alpha = \frac{\sqrt{3}}{2}$ and $\cos \beta = 0$?
 - (a) 0°
- (b) 30°
- (c) 45°
- (d) 60°
- **13.** If (x 2) is a factor of polynomial $p(x) = x^3 + 2x^2 kx + 10$, then the value of k is:
 - (a) 10
- (b) 11
- (c) 12
- (d) 13
- **14.** A(3, 2) and B(-2, 1) are two vertices of \triangle ABC. If $G\left(\frac{5}{3}, -\frac{1}{3}\right)$ is the centroid of \triangle ABC, then the

coordinates of vertex C are:

- (a) (4, -4)
- (b) (1, -4)
- (c) (3, 2)
- (d) (9, 7)
- **15.** What will be the maximum number of students among whom 1001 pens and 910 pencils can be distributed provided that each


- student gets the same number of pens and pencils?
- (a) 70
- (b) 93
- (c) 91
- (d) 82
- **16.** Calculate the value of a, if x = a and y = b is the solution of the linear equations x y = 2 and x + y = 4.
 - (a) 1
- (b) 3
- (c) 2
- (d) 0
- **17.** Evaluate $\tan \theta$, if $\sin \theta + \cos \theta = \sqrt{2} \cos \theta$, $(\theta \neq 90^{\circ})$.
 - (a) 0
- (b) $\sqrt{2}$
- (c) $\sqrt{2} + 1$
- (d) $\sqrt{2}-1$
- **18.** A rational number in its decimal expansion is 1.7321. If the number is expressed in the form of $\frac{p}{q}$, then q must be of the form:
 - (a) $2^m 7^n$
- (b) $3^m 5^n$
- (c) $2^m 5^n$
- (d) $3^m 7^t$
- **19.** What is the value of k in the quadratic polynomial $kx^2 + 4x + 3k$, if the sum of the zeroes is equal to their product?
 - (a) $-\frac{4}{3}$
- (b) $\frac{2}{3}$
- (c) $\frac{1}{0}$
- (d) -5
- **20.** Find the value of k for which the linear equations x + 2y = 3 and 5x + ky = 7, does not have a unique solution.
 - (a) 5
- (b) 7
- (c) 2
- (d) 10

SECTION - B


16 marks

(Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.)

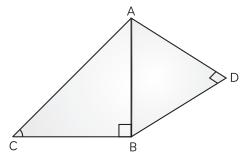
21. In the given figure, PQRS is a trapezium, such that PQ || SR. Find x.

- (a) 2
- (b) 5
- (c) 3
- (d) 4
- **22.** In the given figure, the centroid of $\triangle ABC$ is:

- (a) $\left(3, \frac{5}{2}\right)$
- (b) $(\frac{5}{2}, 3)$
- (c) $\left(2, \frac{5}{3}\right)$
- (d) $\left(\frac{5}{3}, 2\right)$

23.	Salesman was having a lot of 100 shirts of
	which 88 are good, 8 have minor defects and
	4 have major defects. Suresh, a shopkeeper
	will buy only those shirts which are good.
	If a shirt is selected at random from the lot,
	what is the probability that he will buy the
	shirt?

(a)	22
(a)	25


(b)
$$\frac{23}{25}$$

(c)
$$\frac{11}{100}$$

(d)
$$\frac{24}{25}$$

- **24.** Consider two numbers as *x* and *y*. The sum of them is 33 and their difference is 17. Find the numbers.
 - (a) 11 and 22
- (b) 25 and 8
- (c) 17 and 26
- (d) 24 and 9
- **25.** The number of solutions of the pair of linear equations x + 3y = 4 and 2x + y = 5 is:
 - (a) One
- (b) Infinite
- (c) No Solution
- (d) Two
- **26.** Write the sum of exponents of prime factors in the prime factorisation of 250.
 - (a) 4
- (b) 6
- (c) 8
- (d) 3
- **27.** Which of the following condition is correct for the graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ to be an upward parabola?
 - (a) a < 0
- (b) a = 0
- (c) a > 0
- (d) b = 0
- **28.** Evaluate $0.\overline{68} + 0.\overline{73}$.
 - (a) $1.\overline{31}$
- (b) $1.\overline{42}$
- (c) $1.\overline{21}$
- (d) $1.0\overline{1}$
- 29. Calculate the LCM of two positive integers whose product is 108 and HCF is 3.
 - (a) 72
- (b) 36
- (c) 18
- (d) 9
- **30.** What is the value of θ in the expression, tan $3\theta = \sin 45^{\circ} \cos 45^{\circ} + \sin 30^{\circ}$?
 - (a) 0°
- (b) 15°
- (c) 30°
- (d) 45°
- **31.** What is the value of x if the probability of guessing the correct answer to a certain test question is $\frac{x}{12}$ and the probability of not guessing the correct answer to this question is $\frac{2}{3}$?
 - (a) 4
- (b) 6
- (c) 5
- (d) 3
- **32.** The mid-point of (3p, 4) and (-2, 2q) is (2, 6). The value of (p + q) is:

- (a) 5
- (b) 6
- (c) 7
- (d) 8
- 33. Degree of a zero polynomial is:
 - (a) 0
- (b) 1
- (c) 2
- (d) Not defined
- **34.** In the given figure, AD = 4 cm, BD = 3 cm and CB = 12 cm. Then cot θ =

- (a) $\frac{3}{4}$
- (b) $\frac{5}{12}$
- (c) $\frac{4}{3}$
- (d) $\frac{12}{5}$
- **35.** The value of $(\tan \theta \csc \theta)^2$ $(\sin \theta \sec \theta)^2$ is :
 - (a) -1
- (b) 0
- (c) 1
- (d) 2
- **36.** Priyanka, a X standard student, has only ₹ 1 and ₹ 2 coins in her piggy bank. While counting, she found that total number of coins are 50 and amount of money with her is ₹ 75. Observing that, certain question arises into her mind. She denote the number of ₹ 1 coins by x and ₹ 2 coins by y.

What are the number of $\overline{}$ 1 coins in her piggy bank?

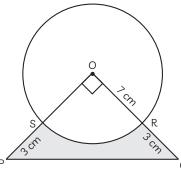
- (a) 10
- (b) 20
- (c) 22
- (d) 25
- **37.** Find the value(s) of x, if the distance between the points A(x, -1) and B(3, 2) is 5.
 - (a) 7, -1
- (b) 1, 7
- (c) -7, 1
- (d) -1, -7
- **38.** In what ratio does *x*-axis divides the join of A(2, –3) and B(5, 6)?

- (a) 1:1
- (b) 2:1
- (c) 1:2
- (d) 1:3
- **39.** Calculate the least positive integer which is divisible by 20 and 24.
 - (a) 120
- (b) 200
- (c) 150
- (d) 480

- **40.** Which among the following is the relation between x and y such that the point (x, y) is equidistant from (7, 1) and (3, 5)?
 - (a) x y = 2
 - (b) 3x + 2y = 6
 - (c) 7x 8y = 0
 - (d) 3x 2y = 4

SECTION - C

8 marks

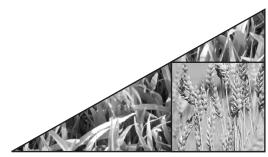

(Case Study Based Questions.)

(Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted.)

Q. 41-45 are baded on Case Study-1

Case Study-1:

St. Francis is organising their annual fest. They want to give cash prize along with a momento to their best students. Four identical momento are made by the school to award students for four values i.e. Honesty, Punctuality, Cleanliness and Non-violence. Each momento is made as shown in figure and its base PQRS is shown from the front side. The part PQRS is silver plated. The rate of silver plating is ₹20 per m².



- 41. What is the area of quadrant OSRO?
 - (a) 36.5 cm^2
- (b) 38.5 cm^2
- (c) 39 cm^2
- (d) 40 cm^2
- **42.** Evaluate the area of $\triangle POQ$.
 - (a) $36 \, \text{cm}^2$
- (b) 48 cm²
- (c) 50 cm^2
- (d) 52 cm^2
- **43.** What is the total cost of silver plating the part PQRS?
 - (a) ₹ 200
- (b) ₹ 230
- (c) ₹ 280
- (d) ₹ 420

- **44.** Calculate the area of major sector in the figure.
 - (a) 112 cm²
- (b) 114 cm²
- (c) 100 cm^2
- (d) 115.5 cm²
- 45. What is the length of arc SR?
 - (a) 10 cm
- (b) 11 cm
- (c) 12 cm
- (d) 14 cm

Q. 46-50 are baded on Case Study 2 Case Study-2 :

Rajesh has a field which is in the shape of a right angled triangle. The perpendicular and the base are of lengths 144 m and 84 m respectively. He wants to leave a space in the form of a square of largest size inside the field for growing wheat and the remaining for growing vegetables.

- **46.** Which among the following is the incorrect criterion of similarity?
 - (a) ASA
- (b) SSS
- (c) SAS
- (d) AAA
- **47.** If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then other two sides are divided in the same ratio. Identify the theorem.
 - (a) Bisector theorem
 - (b) Pythagoras theorem
 - (c) Thales theorem
 - (d) Alternate segment theorem

- **48.** What is the length of the side of squared space?
 - (a) 55.2 m
 - (b) 53.05 m
 - (c) 54 m
 - (d) 52.05 m

- 49. What is the area of the square field?
 - (a) 2850.70 m²
- (b) 2820.40 m²
- (c) 2930 m²
- (d) 2814.30 m²
- 50. Evaluate the area of the remaining field, other than the square field?
 - (a) 3232.5 m²
- (b) 3645 m²
- (c) 3250 m²
- (d) 3233.7 m²

SOLUTION SAMPLE PAPER - 4

SECTION - A

1. (b)
$$4x^2 + x + 1$$

Explanation: We know a quadratic polynomial with S and P as sum and product of zeroes respectively, is gives as

$$p(x) = k(x^2 - Sx + P).$$

where, k is constant

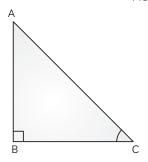
Here,

$$S = -\frac{1}{4} \text{ and } P = \frac{1}{4}$$

:.

$$p(x) = k \left[x^2 - \left(-\frac{1}{4} \right) x + \frac{1}{4} \right]$$

$$= \frac{k}{4} \left(4x^2 + x + 1 \right)$$


If k = 4, then

$$p(x) = 4x^2 + x + 1$$

2. (a)
$$\frac{2}{\sqrt{3}}$$

Explanation: In ∆ABC,

$$\angle B = 90^{\circ}$$
 and $\frac{AB}{AC} = \frac{1}{2}$

$$\sin C = \frac{AB}{AC} = \frac{1}{2} = \sin 30^{\circ}$$

$$\Rightarrow \qquad \angle C = 30^{\circ}$$

So,

$$\angle A = 180^{\circ} - (\angle C + \angle B)$$

[Using angle sum property] = 180° – (30° + 90°)

Now,
$$\frac{\cot A + \tan C}{\sin B + \cos B} = \frac{\cot 60^\circ + \tan 30^\circ}{\sin 90^\circ + \cos 90^\circ}$$

$$= \frac{\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}}{1 + 0} = \frac{2}{\sqrt{3}}$$

3. (c) 2

Explanation: $\sin^2 60^\circ + 2 \tan 45^\circ - \cos^2 30^\circ$

$$= \left(\frac{\sqrt{3}}{2}\right)^2 + 2 \times 1 - \left(\frac{\sqrt{3}}{2}\right)^2$$
$$= 2$$

4. (d) 0.0216

Explanation: We have,

$$\frac{27}{1250} = \frac{27}{2 \times 5^4}$$

$$= \frac{27 \times 2^3}{2 \times 2^3 \times 5^4} = \frac{27 \times 8}{2^4 \times 5^4}$$

$$= \frac{216}{(10)^4} = \frac{216}{10000} = 0.0216$$

5. (a) (0, -1)

Explanation: We know that x-coordinate on y-axis is zero.

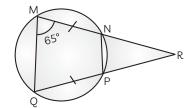
Therefore, let the point on y-axis be P(0, y) and given points are A(2, 3) and B(-4, 1).

⇒
$$PA^2 = PB^2$$

⇒ $(0-2)^2 + (y-3)^2 = (0+4)^2 + (y-1)^2$
⇒ $4+y^2-6y+9=16+y^2-2y+1$
⇒ $-4y=17-13=4$
⇒ $y=-1$

 \therefore Point on y-axis is (0, -1).

6. (d) $\frac{5}{26}$


Explanation: Total number of cards = 52

Number of favourable outcomes *i.e.*, card bearing an even number in black = 10

$$\therefore \text{ Required probability} = \frac{10}{52} = \frac{5}{26}$$

7. (d) 50°

Explanation: In figure,

$$\therefore \qquad \angle RNP = \angle M = 65^{\circ}$$

[Corresponding angles]

Also, $\frac{RI}{NN}$

[By BPT]

 \Rightarrow RN = RP

[:: MN = PQ]

$$\angle RNP = \angle RPN = 65^{\circ}$$

In ARNP,

$$\angle$$
R + \angle RNP + \angle RPN = 180°
 \angle R + 65° + 65° = 180°
 \angle R + 130° = 180°
 \angle R = 50°

8. (c) ab = 6

and

Explanation: We have

$$ax + 2y = 7$$
$$3x + by = 16$$

Condition for parallel lines is:

$$\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2}$$

$$\Rightarrow \frac{a}{3} = \frac{2}{b}$$

$$\Rightarrow ab = 6$$

9. (d) 5

Explanation : Let $p(x) = x^2 - 5x + 6$

To find zeroes of p(x),

put
$$p(x) = 0$$

 $\Rightarrow (x-3)(x-2)$
 $\Rightarrow x = 2, 3.$
So, $\alpha = 3$ and $\beta = 2$
Hence, $\alpha^2 - \beta^2 = 9 - 4 = 5$

10. (c) $\frac{1}{5}$

Explanation: Numbers divisible by 4 from 1 to 15 are 4, 8, 12.

∴ Number of favourable cases = 3Number of total possible outcomes = 15

$$\therefore \text{ Required probability} = \frac{3}{15} = \frac{1}{5}$$

11. (c) origin

Explanation: As
$$x - y = 0$$

 $x = y$

 $\ensuremath{\dots}$ which represents a line, passing through the origin.

12. (b) 30°

Explanation: Given,
$$\sin \alpha = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \qquad \sin \alpha = \sin 60^{\circ} \Rightarrow \alpha = 60^{\circ}$$
and
$$\cos \beta = 0 \Rightarrow \cos \beta = \cos 90^{\circ}$$

$$\Rightarrow \qquad \beta = 90^{\circ}$$

$$\therefore \qquad \beta - \alpha = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

13. (d) 13

Explanation: Since, (x - 2) is a factor of p(x),

$$p(x = 2) = 0$$

$$\Rightarrow (2)^3 + 2(2)^2 - k(2) + 10 = 0$$

$$\Rightarrow 8 + 8 - 2k + 10 = 0$$

$$\Rightarrow 26 - 2k = 0$$

$$\Rightarrow k = 13$$

14. (c) (4, -4)

Explanation: Let the coordinates of vertex C be (x, y),

Then.

$$G\left(\frac{5}{3}, -\frac{1}{3}\right) = \left(\frac{3 + (-2) + x}{3}, \frac{2 + 1 + y}{3}\right)$$

$$\Rightarrow \frac{5}{3} = \frac{1 + x}{3}; -\frac{1}{3} = \frac{3 + y}{3}$$

$$\Rightarrow x = 5 - 1; y = -1 - 3$$

$$\Rightarrow x = 4; y = -4$$

$$\therefore \text{ Vertex C} = (4, -4)$$

15. (c) 91

Explanation: Maximum number of students to have same number of pens and pencils

16. (b) 3

Explanation: We have x - y = 2 and x + y = 4Also x = a and y = b is the solution of given equations.

$$a - b = 2$$
 ...(i)
and $a + b = 4$...(ii)

On adding equations (i) and (ii), we get

$$2a = 6$$
$$a = 3$$

17. (d) $\sqrt{2} - 1$

Explanation: We have,

$$\sin \theta + \cos \theta = \sqrt{2} \cos \theta$$

$$\Rightarrow \qquad \sin \theta = \sqrt{2} \cos \theta - \cos \theta$$

$$\Rightarrow \qquad \sin \theta = \cos \theta (\sqrt{2} - 1)$$

$$\Rightarrow \qquad \frac{\sin \theta}{\cos \theta} = \sqrt{2} - 1$$

$$\Rightarrow \qquad \tan \theta = \sqrt{2} - 1$$

18. (c) 2^m 5ⁿ

Explanation: For a rational number to be a terminating decimal, its denominator must be of the form 2^m 5^n , where, m, n are nonnegative integers.

19. (a)
$$-\frac{4}{3}$$

Explanation: Let α and β be the zeroes of polynomial $kx^2 + 4x + 3k$.

According to the question.

$$\alpha + \beta = \alpha\beta$$

$$\Rightarrow \frac{-4}{k} = \frac{3k}{k}$$

$$\Rightarrow k = -\frac{4}{3} \qquad [\because k \neq 0]$$

20. (d) 10

Explanation: For unique solution, we have

$$\frac{1}{5} \neq \frac{2}{k} \Rightarrow k \neq 10$$

So, if, k = 10, then the given system of linear equations will not have unique solution.

SECTION - B

21. (c) 3

Explanation: Since PQ || SR,

[By AAA similarity criteria]

$$\frac{PO}{OR} = \frac{QO}{OS}$$

$$\Rightarrow \frac{4}{5} = \frac{x+5}{2x+4}$$

$$\Rightarrow 8x+16 = 5x+25$$

$$\Rightarrow 3x = 9$$

$$\Rightarrow x = 3$$

22. (d)
$$\left(2, \frac{5}{3}\right)$$

Explanation: From the graph,

Coordinates of A = (-1, 4)

Coordinates of B = (4, 1)

Coordinates of C = (3, 0)

.. Centroid of AABC

$$= \left(\frac{-1+4+3}{3}, \frac{4+1+0}{3}\right)$$
$$= \left(\frac{6}{3}, \frac{5}{3}\right) = \left(2, \frac{5}{3}\right)$$

23. (a) $\frac{22}{25}$

Explanation: Total number of shirts = 100 Number of good shirts = 88

$$\therefore P(Sumesh buys the shirt) = \frac{88}{100} = \frac{22}{25}$$

24. (b) 25 and 8

Explanation: Let the two numbers be x and y. such that x > y.

...
$$x + y = 33$$
 ...(i)
and $x - y = 17$...(ii)

On adding equations (i) and (ii), we get

$$2x = 50 \Rightarrow x = 25$$

On putting x = 25 in equation (i), we get

$$25 + y = 33$$

 $y = 33 - 25 = 8$

Hence, the two numbers are 25 and 8.

25. (a) One

Explanation: Equations are

$$x + 3y = 4$$

and $2x + y = 5$
Here, $a_1 = 1, b_1 = 3, c_1 = -4$
 $a_2 = 2, b_2 = 1, c_2 = -5$

$$\frac{a_1}{a_2} = \frac{1}{2}; \frac{a_1}{a_2} = \frac{3}{1}; \frac{c_1}{c_2} = \frac{4}{5}$$

$$\Rightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

:. Equations have an unique solution.

$/! \setminus \mathsf{Caution}$

Here compare the coefficients of given equations to find the type of solution the pair of equations

26. (a) 4

Explanation: Prime factorisation of 250 is

$$250 = 2 \times 5 \times 5 \times 5$$
$$= 2^{1} \times 5^{3}$$

Sum of exponents = 1 + 3 = 4

27. (c) a > 0

Explanation: For the graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ to be an upward, parabola, a > 0.

28. (b) 1.42

Explanation:

Let
$$x = 0.\overline{68} = 0.6868...$$
 ...(i) \Rightarrow $100x = 68.68...$...(ii)

Subtracting (i) from (ii), we get

$$99x = 68$$
$$x = \frac{68}{99}$$

Similarly, let
$$y = 0.73 = 0.7373...$$
 ...(iii) \Rightarrow 100 $y = 73.73...$...(iv)

Subtracting (iii) from (iv), we get

 \Rightarrow

$$y = \frac{73}{99}$$

Now,
$$0.\overline{68} + 0.\overline{73} = x + y$$

$$= \frac{68}{99} + \frac{73}{99}$$

$$= \frac{141}{99} = 1.424242...$$

$$= 1.\overline{42}$$

$/! \setminus$ Caution

 For calculating the sum, first convert the given decimals in rational form. Then, find the final answer in decimal form.

29. (b) 36

Explanation: Let a and b be any two positive integers. Then, we have,

LCM
$$(a, b) \times HCF(a, b) = ab$$

$$\Rightarrow LCM(a, b) \times 3 = 108$$

$$\Rightarrow LCM(a, b) = \frac{108}{3} = 36$$

30. (b) 15°

Explanation: We have,

$$\tan 3\theta = \sin 45^{\circ} \cos 45^{\circ} + \sin 30^{\circ}$$

$$\Rightarrow \tan 3\theta = \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} + \frac{1}{2}$$

$$\Rightarrow \tan 3\theta = \frac{1}{2} + \frac{1}{2} = 1$$

$$\Rightarrow \tan 3\theta = 1 \Rightarrow \tan 3\theta = \tan 45^{\circ}$$

$$\Rightarrow 3\theta = 45^{\circ}$$

$$\therefore \theta = 15^{\circ}$$

31. (a) 4

Explanation: We have,

P(not guessing correct answer) = $\frac{2}{3}$

.: P(guessing correct answer)

correct answer)

$$=1-\frac{2}{3}=\frac{1}{3}$$

So, according to the question,

$$\frac{x}{12} = \frac{1}{3} \Rightarrow x = 4$$

32. (b) 6

Explanation: Since, (2, 6) is the mid-point of (3p, 4) and (-2, 2q)

$$\therefore (2,6) = \left(\frac{3p + (-2)}{2}, \frac{4 + 2q}{2}\right)$$

$$\Rightarrow 2 = \frac{3p - 2}{2}; 6 = \frac{4 + 2q}{2}$$

$$\Rightarrow 3p = 4 + 2 = 6; 2q = 12 - 4 = 8$$

$$\Rightarrow p = 2; q = 4$$

$$\therefore p + q = 2 + 4 = 6$$

33. (d) Not defined

34. (d)
$$\frac{12}{5}$$

Explanation: In ΔABD, using Pythagoras theorem

$$AB^{2} = AD^{2} + BD^{2}$$

$$= 4^{2} + 3^{2}$$

$$= 16 + 9 = 25$$

$$AB = \sqrt{25} = 5$$
AABC

Now, in
$$\triangle ABC$$

$$\cot \theta = \frac{BC}{\Delta B} = \frac{12}{5}$$

35. (c) 1

Explanation: $(\tan \theta \csc \theta)^2 - (\sin \theta \sec \theta)^2$

$$= \left(\frac{\sin\theta}{\cos\theta} \times \frac{1}{\sin\theta}\right)^2 - \left(\sin\theta \times \frac{1}{\cos\theta}\right)^2$$
$$= \left(\frac{1}{\cos\theta}\right)^2 - \left(\frac{\sin\theta}{\cos\theta}\right)^2$$
$$= \sec^2\theta - \tan^2\theta$$
$$= 1$$

36. (d) 25

Explanation: The system of linear equations, representing the given situation, is

$$x + y = 50$$
 ...(i)

and

$$x + 2y = 75$$
 ...(ii)

On subtracting (i) from (ii), we get

$$y = 25$$

On substituting y = 25 in (i), we get

$$x = 25$$

Thus, total number of ₹ 1 coins is 25.

37. (a) 7, -1

Explanation: Let A(x, -1) and B(3, 2) be the given points.

So, AB = 5 units [Given]

$$\Rightarrow \sqrt{(x-3)^2 + (-1-2)^2} = 5$$

[Using distance formula]

$$\Rightarrow$$
 $(x-3)^2 + 9 = 5^2$

$$\Rightarrow \qquad x^2 - 6x + 18 = 25$$

$$\Rightarrow$$
 $x^2 - 6x - 7 = 0$

$$\Rightarrow (x-7)(x+1) = 0$$

$$\Rightarrow x = 7 \text{ or } -1.$$

38. (c) 1:2

Explanation: Let the required ratio be k:1.

We know, y-coordinate of any point on x-axis is

:. Using section formula,

$$\frac{6k-3}{k+1}=0$$

$$\Rightarrow \qquad 6k - 3 = 0 \Rightarrow k = \frac{1}{2}$$

$$\therefore$$
 Required ratio = $k: 1 = \frac{1}{2}: 1 = 1: 2$

39. (a) 120

Explanation: We have,

$$20 = 2^2 \times 5$$
 and $24 = 2^3 \times 3$

$$\therefore \text{ Required number} = \text{LCM}(20, 24)$$
$$= 2^3 \times 3 \times 5 = 120$$

$$= 2^{\circ} \times 3 \times 5 =$$

40. (a)
$$x - y = 2$$

Explanation: As point P(x, y) is equidistant from A(7, 1) and B(3, 5)

$$\therefore$$
 PA = PB

$$PA^2 = PB^2$$

$$\Rightarrow (x-7)^2 + (u-1)^2 = (3-x)^2 + (5-u)^2$$

$$\Rightarrow x^2 - 14x + 49 + y^2 - 2y + 1$$

$$= 9 - 6x + x^2 + 25 - 10y + y^2$$

$$\Rightarrow$$
 -14x - 2y + 50 = -6x - 10y + 34

$$\Rightarrow$$
 8x - 8y = 16

$$\Rightarrow$$
 $x-y=2$

SECTION - C

41. (b) 38.5 cm²

Explanation:

Area of quadrant OSRO =
$$\frac{1}{4}\pi r^2$$

= $\frac{1}{4} \times \frac{22}{7} \times 7 \times 7$
= 38.5 cm²

42. (c) 50 cm²

Explanation: Area of
$$\triangle POQ = \frac{1}{2} \times OP \times OQ$$

$$= \frac{1}{2} \times 10 \times 10$$

$$[\because OS = OR = 7 \text{ cm and}$$

$$OQ = OR + RQ = 10 \text{ cm}]$$

$$= 50 \text{ cm}^2$$

43. (b) ₹ 230

Explanation: Area of region which is to be silver plated

= Area of
$$\triangle OPQ$$
 - Area of sector
OSRO
= $50 - 38.5$ [from Q 41 and Q 42]
= 11.5 cm²

.. Total cost of silver plating

44. (d) 115.5 cm²

Explanation:

Area of major sector = Area of circle - Area of minor sector

$$= \pi r^2 - \frac{1}{4} \pi r^2 = \frac{3}{4} \pi r^2$$

$$= \frac{3}{4} \times \frac{22}{7} \times 7 \times 7$$
$$= 115.5 \text{ cm}^2$$

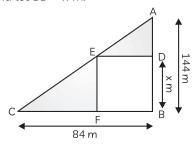
45. (b) 11 cm

Explanation:

Length of arc SR =
$$\frac{\theta}{360^{\circ}} \times 2\pi r$$

= $\frac{90^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 7$
= 11 cm

46. (a) ASA


Explanation: ASA criterion of similarity does not exist.

47. (c) Thales theorem

Explanation: Given statement is a statement of Thales theorem (BPT theorem).

48. (b) 53.05 m

Explanation: Let ABC be the right triangular field. Also, let BDEF be the required square space of the largest size for growing the wheat and let BD = x m.

So,
$$AD = (144 - x) \text{ m}$$

In \triangle ADE and \triangle ABC,

$$\angle ADE = \angle ABC$$
 [each 90°]

[corresponding angles]

$$\angle A = \angle A$$

[common angles]

$$\therefore$$
 $\triangle ADE = \triangle ABC$

[by AAA similarity criterion]

So,
$$\frac{AD}{AB} = \frac{DE}{BC}$$

$$\Rightarrow \frac{144 - x}{144} = \frac{x}{84}$$

$$\Rightarrow$$
 144 × 84 – 84 x = 144 x

$$\Rightarrow 144 \times 84 = 144x + 84x$$

$$\Rightarrow$$
 228 $x = 144 \times 84$

$$\Rightarrow x = \frac{144 \times 84}{228}$$

$$= 53.05 \text{ m}$$

Thus, side of the required square space is 53.05 m.

49. (d) 2814.30 m²

Explanation: Area of square field

=
$$(\text{Side})^2 = (x)^2$$

= $(53.05)^2 = 2814.30 \text{ m}^2$
[: $x = 53.05 \text{ m} \text{ (from Q. 48)}]$

50. (d) 3233.7 m²

Explanation: Area of the field other than the square field

= Area of
$$\triangle$$
ABC - Area of square BDEF

$$= \frac{1}{2} \times 84 \times 144 - (53.05)^2$$

[Using Q. 48]

$$= 6048 - 2814.30$$

= 3233.7 m²

