# **TERM-1** SAMPLE PAPER

SOLVED

# **MATHEMATICS**

(STANDARD)

Time Allowed: 90 Minutes Maximum Marks: 40

General Instructions: Same instructions as given in the Sample Paper 1.

# **SECTION - A**

16 marks

(Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.)

|    | (c) 0, 1                                             | (d) 2, 2     |                                             | (c) $\frac{1}{2}$ | 76    | (d)          | <del>4</del> |                    |
|----|------------------------------------------------------|--------------|---------------------------------------------|-------------------|-------|--------------|--------------|--------------------|
| 2. | If in two triangles $A = \frac{CA}{PO}$ , then which | ABC and PQR, | $\frac{AB}{QR} = \frac{BC}{PR}$ ng is true? | 7. In a 2         | ∆ABC, | right-angled | at B, if     | $AB = \frac{3}{2}$ |
|    | ΡŲ                                                   |              |                                             |                   | _     |              |              | -                  |

- (a)  $\triangle$ BCA ~  $\triangle$ PQR (b) △PQR ~ △CAB
- (c)  $\triangle PQR \sim \triangle ABC$ (d)  $\triangle$ CBA ~  $\triangle$ PQR
- 3. Evaluate: cot 10°. cot 20°. cot 30°. cot 40° ..... cot 90°.

**1.** The values of m, n respectively, if  $108 = 2^m \times 10^m$ 

(b) 3, 1

 $33 \times 5^{n}$ , are: (a) 2, 0

(c) 4:3

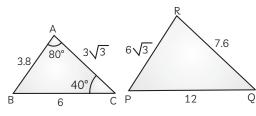
- (a) 1 (b) -1(c)  $\frac{\sqrt{3}}{2}$ (d) 0
- 4. The ratio in which x-axis divides the join of A(2, -3) and B(5, 6) is:
- (a) 2:1(b) 3:4
- 5. If the area of a semi-circular region is 308

(d) 1:2

- cm<sup>2</sup>, then its perimeter is: (a) 36 cm (b) 44 cm (c) 88 cm (d) 72 cm
- 6. From a pack of 52 playing cards, the probability of picking a face card is:

- BC, BC = x + 2 and AC = x + 3, then the quadratic equation, formed in x, is:
  - (a)  $x^2 8x 20 = 0$ (b)  $x^2 - 2x + 5 = 0$
  - (c)  $x^2 + 8x + 20 = 0$
  - (d)  $x^2 + 2x + 5 = 0$
- 8. What is the distance between the points A(10  $\cos \theta$ , 0) and B(0, 10  $\sin \theta$ )?
  - (a) 15 units (b) 10 units (c) 20 units (d) 1 unit
- 9. What is the value of k, if one of the zeroes of the quadratic polynomial  $(k-1)x^2 + kx + 1$ is -3?
  - (a)  $\frac{4}{3}$

- **10.** Evaluate the value of 2  $\tan^2 \theta + \cos^2 \theta 2$ , where  $\theta$  is an acute angle and  $\sin \theta = \cos \theta$ .
  - (a) 1
- (b) 1
- (c)  $-\frac{3}{2}$
- (d) 0
- **11.** What is the perimeter of a square which is circumscribing a circle of radius x cm?
  - (a) 8x
- (b) 4x
- (c) 6x
- (d) 2x
- **12.** If the probability of raining tomorrow is 0.75, then the probability that it will not rain tomorrow, is:
  - (a)  $\frac{1}{4}$
- (b)  $\frac{3}{4}$
- (c)  $\frac{1}{2}$
- (d)  $\frac{1}{3}$
- **13.** What is measure of  $\angle P$ , in the given figure?



- (a) 70°
- (b) 60°
- (c) 80°
- (d) 40°
- **14.** What is the ratio of the areas of  $\triangle$ ABC and  $\triangle$ BDE, if  $\triangle$ ABC and  $\triangle$ BDE are two equilateral triangles such that D is the mid-point of BC.
  - (a) 1:2
- (b) 2:1
- (c) 1:4
- (d) 4:1

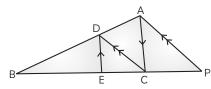
- **15.** For what value of k, the system of equations 8x + 5y = 9 and kx + 10y = 18 has infinitely many solutions?
  - (a) k = 10
- (b) k = 16
- (c) k = 8
- (d) k = 15
- **16.** If sin A =  $\frac{3}{5}$ , then the value of sec A is:
  - (a)  $\frac{4}{5}$
- (b)  $\frac{3}{4}$
- (c)  $\frac{4}{3}$
- (d)  $\frac{5}{4}$
- **17.** If  $p(x) = ax^2 + bx + c$ , then  $-\frac{b}{a}$  is equal to:
  - (a) 0
- (b) 1
- (c) product of zeroes (d) sum of zeroes
- **18.** If -1 is a zero of the polynomial  $p(x) = x^2 7x 8$ , then the other zero is:
  - (a) -8
- (b) -7
- (c) 1
- (d) 8
- **19.**8 chairs and 5 tables cost ₹ 10500, while 5 chairs and 3 tables cost ₹ 6450. The cost of each chair will be:
  - (a) ₹ 750
- (b) ₹ 600
- (c) ₹850
- (d) ₹ 900
- **20.** What is the value of  $(\tan \theta \csc \theta)^2$   $(\sin \theta \sec \theta)^2$ ?
  - (a) -1
- (b) 0
- (c) 1
- (d) 2

# SECTION - B

16 marks

(Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.)

- **21.** The mid-point of (3p, 4) and (-2, 2q) is (2, 6). Find the value of pq.
  - (a) 5
- (b) 6
- (c) 7
- (d) 8
- **22.** In the figure below, DE || AC and DC || AP. Find BE: EC, if BC = 4 cm and BP = 6 cm.

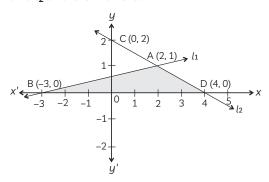


- (a) 1:1
- (b) 1:2
- (c) 2:1
- (d) 1:3

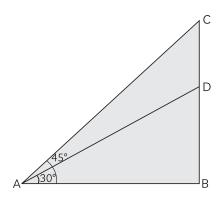
- 23. What is the smallest number which when increased by 17 becomes exactly divisible by 520 and 468?
  - (a) 4680
- (b) 4663
- (c) 4581
- (d) 4682
- **24.** If the sum of zeroes of the polynomial  $p(x) = 3x^2 kx + 6$  is 3, then the value of k is:
  - (a) 6
- (b) 9
- (c) 12
- (d) 3
- **25.** Which type of lines are represented by the pair of linear equations 4x + 3y 1 = 5 and 12x + 9y = 15?
  - (a) Coincident
  - (b) Intersecting at exactly one point
  - (c) Parallel
  - (d) Intersecting at two points

- 26. An uniform path runs around a circular park. The difference between the outer and inner circumference of the circular path is 132 m. Its width is:
  - (a) 7 m
- (b) 21 m
- (c) 42 m
- (d) 32 m
- 27. A box had tickets, numbered from 11, 12, 13 ....., 30. A ticket is taken out from it at random. Find the probability that the number on the drawn ticket is greater than 15 and a multiple of 5.
  - (a)  $\frac{1}{21}$

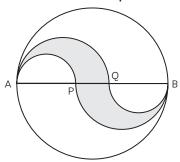
- **28.** What is the value of  $m^2 n^2$ , where  $m = \tan \theta$ +  $\sin \theta$  and  $n = \tan \theta - \sin \theta$ ?
  - (a)  $\sqrt{\frac{m}{n}}$
- (b) 4√*mn*
- (c) √mn
- (d)  $4\sqrt{\frac{m}{n}}$
- **29.** The area of triangle formed by the lines  $l_2$ and  $l_2$  and the x-axis is:



- (a) 7 sq. units
- (b)  $\frac{9}{2}$  sq. units
- (c)  $\frac{7}{2}$  sq. units (d) 4 sq. units
- **30.** In the figure, the value of  $\frac{AB}{BC} + \frac{BD}{AD}$  is:



- (a)  $\frac{1}{2}$
- (b) 1
- (c)  $\frac{3}{2}$
- (d) 2
- 31. What is the area of shaded region in the given figure where diameter AB is 12 cm long and AB is trisected at points P and Q.

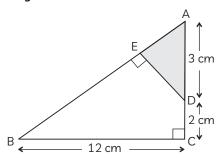


- (a)  $14\pi \text{ cm}^2$
- (b)  $12\pi \text{ cm}^2$
- (c)  $22\pi \text{ cm}^2$
- (d)  $13\pi \text{ cm}^2$
- **32.** In a  $\triangle PQR$ , S in a point on side PQ and T is a point on side PR such that ST || QR,  $\frac{PS}{SQ} = \frac{3}{5}$  and PR = 28 cm. What is the value of PT?
  - (a) 12.5 cm
- (b) 17.5 cm
- (c) 10.5 cm
- (d) 13.5 cm
- **33.** The zeroes of the polynomial  $\sqrt{3}x^2 8x + 4\sqrt{3}$ 
  - (a)  $2\sqrt{3}, \frac{2}{\sqrt{3}}$  (b)  $2\sqrt{3}, \frac{\sqrt{3}}{2}$
  - (c)  $6\sqrt{2}$ , 3
- (d)  $3\sqrt{2}$ , 6
- 34. A box contains 40 pens out of which x are non-defective. If one pen is drawn at random, the probability of drawing a nondefective pen is y. If we replace the pen drawn and then add 20 more non-defective pens in this bag, the probability of drawing a non-defective pen is 4y. Then, evaluate the value of x.
  - (a) 4
- (b) 7
- (c) 6
- (d) 2
- 35. How many solutions are there for following pair of linear equations:

$$x + 2y - 8 = 0$$
,  $2x + 4y = 16$ 

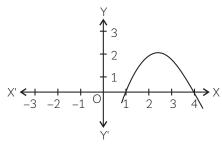
- (a) Unique
- (b) Infinite
- (c) No solution
- (d) Two solutions
- **36.** If the vertices of  $\triangle ABC$  are A(-1, -3), B(2, 1) and C(8, -4), then the coordinates of its centroid are:
  - (a) (3, 2)
- (b) (3, -2)
- (c) (-3, 2)
- (d) (-3, -2)

**37.** In the given figure, if  $\triangle ABC \sim \triangle ADE$ , then the length of DE is:



- (a)  $\frac{15}{13}$  cm (b)  $\frac{13}{12}$  cm
- (c)  $\frac{36}{13}$  cm
- (d)  $\frac{12}{13}$  cm
- **38.** In a  $\triangle$ ABC, right angled at B, find the value of 2 sin A cot A if tan A =  $\sqrt{3}$ .
  - (a)  $\frac{1}{\sqrt{2}}$
- (c) -1

- 39. What is the point of intersection of the lines x - 3 = 0 and y - 5 = 0?
  - (a) (-3, 5)
- (b) (-3, -5)
- (c) (3, 5)
- (d) (3, -5)
- **40.** Shraddha visited a temple in the Bikaner, Rajasthan. On the way she visited a Fort. The entrance gate of the fort has a shape of a quadratic polynomial (parabolic). The mathematical representation of the gate is shown in the figure.



If one zero of the polynomial is 7 and product of zeroes is -35, then polynomial representation of the gate is:

(a) 
$$x^2 + 12x - 35$$
 (b)  $x^2 - 12x - 35$ 

(b) 
$$x^2 - 12x - 35$$

(c) 
$$-x^2 + 2x + 35$$
 (d)  $x^2 + 2x + 35$ 

(d) 
$$x^2 + 2x + 35$$

# **SECTION - C**

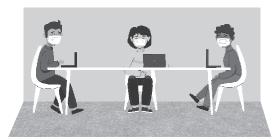
8 marks

(Case Study Based Questions.)

(Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted.)

# Q. 41-45 are based on Case Study-1 Case Study-1:

Due to corona pandemic, we need to follow certain rules i.e. social distancing, washing of hands etc. Three friends namely, Pratima, Qasim and Rajni went to a park to discuss something. They decided to maintain the social distancing due to CORONAVIRUS pandemic and sat at the points P, Q and R respectively.



If the coordinates of P, Q and R are (4, -3), (7, 3) and (8, 5) repsectively, then answer the following:

- **41.** How far are points P and Q?
  - (a)  $3\sqrt{5}$  units (b)  $\sqrt{5}$  units
  - (c)  $4\sqrt{5}$  units (d)  $5\sqrt{2}$  units

- **42.** If a tree is at the point X, which is on the straight line joining Q and R such that it divides the distance between them in the ratio of 1:2, then, the coordinates of X are:
  - (a) (9, 1)
- (c)  $\left(\frac{23}{3}, \frac{13}{3}\right)$  (d)  $\left(\frac{22}{3}, \frac{11}{3}\right)$
- 43. What is the mid-point of the line segment OR?

  - (a)  $(\frac{11}{2}, 0)$  (b)  $(\frac{15}{2}, 4)$
  - (c) (6, 1)
- (d) (8, 5)
- 44. As point Q lies between the points P and R, so the ratio in which Q divides the line segment joining P and R is:
  - (a) 1:2
- (b) 2:1
- (c) 3:1
- (d) 1:3
- 45. The points P, Q and R together makes:
  - (a) an isosceles triangle
  - (b) an equilateral triangle
  - (c) a scalene triangle
  - (d) a straight line

# Q. 46-50 are based on Case Study-2 Case Study-2:

A trailer is a large vehicle for hauling vehicles from one place to another or from the factory to the car showrooms. A leading manufacturer of cars in India has its factory located in Gurugram in Haryana. On a particular weekend, there was a surge in demand for cars. Two models of cars to be transported to various locations across the country. There were 792 cars of model A and 612 cars of model B.



- 46. The maximum number of cars that can be loaded in a trailer such that each trailer has the same number of cars of the same model is:
  - (a) 12
- (b) 18
- (c) 36
- (d) 72
- **47.** The number of trailers required for transporting the cars is:
  - (a) 39
- (b) 78
- (c) 156
- (d) 312
- 48. The LCM of 792 and 612 is:
  - (a) 1224
- (b) 1584
- (c) 6732
- (d) 13464
- **49.** The power of 2 in the prime factorization of 792 is:
  - (a) 1
- (b) 2
- (c) 3
- (d) 4
- **50.** The LCM of the smallest multiple of 4 and smallest multiple of 6 is:
  - (a) 6
- (b) 12
- (c) 24
- (d) 48



# SOLUTION SAMPLE PAPER - 8

### **SECTION - A**

**1.** (a) 2, 0 Explanation:

| 2 | 108 |  |  |
|---|-----|--|--|
| 2 | 54  |  |  |
| 3 | 27  |  |  |
| 3 | 9   |  |  |
| 3 | 3   |  |  |
|   | 1   |  |  |

We have,

$$108 = 2^2 \times 3^3$$
$$= 2^2 \times 3^3 \times 5^0$$

Comparing with  $2^m \times 3^3 \times 5^n$ , we get m = 2, n = 0

III = 2, II

**2.** (b) ΔPOR ~ ΔCAB

#### **Explanation:**

$$\therefore \quad \frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$$

- $\therefore$  By SSS similarity criterion,  $\triangle CAB \sim PQR$
- **3.** (d) 0

**Explanation:** Since,  $\cot 90^{\circ} = 0$ 

 $\therefore$  cot 10°. cot 20°. cot 30° ...... cot 90° = 0

**4.** (d) 1:2

**Explanation:** On x-axis, y-coordinate is zero.

 $\therefore$  Let the point on x-axis which divide the join of points A and B be P(x, 0).

Also, let the required ratio be k:1.

Then using section formula,

$$P(x, 0) = \left(\frac{k \times 5 + 1 \times 2}{k + 1}, \frac{k \times 6 + 1 \times (-3)}{k + 1}\right)$$
$$= \left(\frac{5k + 2}{k + 1}, \frac{6k - 3}{k + 1}\right)$$

$$\Rightarrow 0 = \frac{6k - 3}{k + 1} \Rightarrow 6k - 3 = 0 \Rightarrow k = \frac{1}{2}$$

.. Required ratio = 
$$k : 1 = \frac{1}{2} : 1 = 1 : 2$$

### **5.** (d) 72 cm

**Explanation:** Let r cm be the radius of the semicircular region.

Then, 
$$\frac{1}{2}\pi r^2 = 308$$

$$\Rightarrow \qquad \frac{1}{2} \times \frac{22}{7} \times r^2 = 308$$

$$\Rightarrow \qquad r^2 = 14 \times 2 \times 7$$

$$\Rightarrow \qquad r = 14$$
Now, Perimeter = 2 × radius + length of

semi-circular arc
$$= 2r + \pi r$$

$$= 2 \times 14 + \frac{22}{7} \times 14$$

$$= 28 + 44$$

$$= 72$$

**6.** (b) 
$$\frac{3}{13}$$

#### **Explanation:**

Total number of cards = 52Number of face cards = 12

:. P (Face card) = 
$$\frac{12}{52} = \frac{3}{13}$$

# **7.** (a) $x^2 - 8x - 20 = 0$

#### **Explanation:**

- $\because$   $\triangle$ ABC is right-angled at B
- :. Using Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$\Rightarrow (x+3)^2 = \left(\frac{x}{2}\right) + (x+2)^2$$

$$\Rightarrow x^2 + 6x + 9 = \frac{x^2}{4} + x^2 + 4x + 4$$

$$\Rightarrow 2x + 5 = \frac{x^2}{4}$$

$$\Rightarrow 8x + 20 = x^2$$

$$\Rightarrow x^2 - 8x - 20 = 0$$

#### **8.** (b) 10 units

Explanation: We have,

Required distance AB

$$= \sqrt{(10\cos\theta - 0)^2 + (0 - 10\sin\theta)^2}$$

$$= \sqrt{100\cos^2\theta + 100\sin^2\theta}$$

$$= \sqrt{100(\cos^2\theta + \sin^2\theta)}$$

$$= \sqrt{100 \times 1} = 10 \text{ units}$$

# **9.** (a) $\frac{4}{3}$

**Explanation:** Let  $p(x) = (k-1)x^2 + kx + 1$ Since, -3 is a zero of the polynomial

# **10.** (b) $\frac{1}{2}$

**Explanation:** Given,  $\sin \theta = \cos \theta$ 

$$\Rightarrow \frac{\sin \theta}{\cos \theta} = 1 \Rightarrow \tan \theta = 1$$

$$\Rightarrow \tan \theta = \tan 45^{\circ}$$

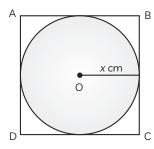
$$\Rightarrow \theta = 45^{\circ}$$

$$\therefore 2 \tan^{2} \theta + \cos^{2} \theta - 2 = 2 \tan^{2} 45^{\circ} + \cos^{2} 45^{\circ} - 2$$

$$2 = 2 \tan^{2} 45^{\circ} + \cos^{2} 45^{\circ}$$
$$= 2(1)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2} - 2$$
$$= 2 + \frac{1}{2} - 2$$
$$= \frac{1}{2}$$

#### **11.** (a) 8x

**Explanation:** A square is circumscribing a circle of radius *x* cm.



- :. Side of square = Diameter of circle
- $\Rightarrow$  Side of square= 2(x) = 2x
- $\therefore$  Perimeter of square = 4(2x) = 8x

# **12.** (a) $\frac{1}{4}$

Explanation: We know that,

P(rain tomorrow) + P(not rain tomorrow) = 1

- $\Rightarrow$  0.75 + P(not rain tomorrow) = 1
- $\Rightarrow$  P(not rain tomorrow)

$$= 1 - 0.75 = 0.25 = \frac{1}{4}$$

Hence, the probability that it will not rain tomorrow is  $\frac{1}{4}$ .

#### **13.** (d) 40°

**Explanation :** In  $\triangle$ ABC and  $\triangle$ PQR

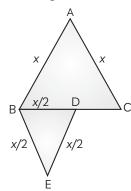
$$\begin{split} \frac{\text{AB}}{\text{QR}} &= \frac{3.8}{7.6} = \frac{1}{2};\\ \frac{\text{BC}}{\text{PQ}} &= \frac{6}{12} = \frac{1}{2}; \text{and}\\ \frac{\text{AC}}{\text{RP}} &= \frac{3\sqrt{3}}{6\sqrt{3}} = \frac{1}{2} \end{split}$$

.. By SSS similarity axiom,

$$\triangle ABC \sim \triangle RQP$$
∴  $\angle C = \angle P$ 
 $\Rightarrow \angle P = 40^{\circ}$ 

#### **14.** (d) 4:1

**Explanation :** Since,  $\triangle$ ABC and  $\triangle$ BDE are two equilateral triangles.



∴ ΔABC ~ ΔEBD

[By AA similarity criterion]

$$\Rightarrow \frac{\text{ar}(\triangle ABC)}{\text{ar}(\triangle EBD)} = \frac{BC^2}{BD^2} = \frac{x^2}{\frac{x^2}{4}} = \frac{4}{1}$$

#### **15.** (b) k = 16

Explanation: We have

$$8x + 5y - 9 = 0$$
  
 $x + 10y - 18 = 0$ 

For infinitely many solutions, we have

and, kx + 10y - 18 = 0

$$\frac{8}{k} = \frac{5}{10} = \frac{-9}{-18}$$

$$\frac{8}{k} = \frac{1}{2} \Rightarrow k = 16$$

**16.** (d) 
$$\frac{5}{4}$$

**Explanation:** We know,  $\cos^2 A + \sin^2 A = 1$ 

$$\Rightarrow \cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$$
and,  $\sec A = \frac{1}{\cos A} = \frac{1}{4/5} = \frac{5}{4}$ 

# **17.** (d) Sum of zeroes

**Explanation:** Here  $p(x) = ax^2 + bx + c$ 

$$=-x^2 + \frac{b}{a}x + c$$

But the general equation of a quadratic equation with  $\alpha$  and  $\beta$  as zeroes is:

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0 \qquad ...(i)$$

$$\therefore \text{ Sum of zeroes or } (\alpha + \beta) = -\frac{b}{a}$$

#### **18.** (d) 8

**Explanation:** Let the other zero be  $\alpha$ .

We know,

Sum of zeroes = 
$$-\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

$$\Rightarrow \qquad -1 + \alpha = -\frac{(-7)}{1}$$

$$\Rightarrow$$
  $-1 + \alpha = 7 \Rightarrow \alpha = 8$ 

#### **19.** (a) ₹ 750

**Explanation:** Let the cost of one chair be  $\not \in x$  and the cost of one table be  $\not \in y$ .

A.T.Q., 
$$8x + 5y = 10500$$
 ....(i)

and 
$$5x + 3y = 6450$$
 ....(ii)

$$x = 750$$

 $\therefore$  cost of one chair =  $\mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x}$ 

#### **20.** (c) 1

**Explanation:**  $(\tan \theta \csc \theta)^2 - (\sin \theta \sec \theta)^2$ 

$$= \left(\frac{\sin\theta}{\cos\theta} \times \frac{1}{\sin\theta}\right) \left(\sin\theta \times \frac{1}{\cos\theta}\right)^2$$
$$= \left(\frac{1}{\cos\theta}\right)^2 - \left(\frac{\sin\theta}{\cos\theta}\right)^2$$
$$= \sec^2\theta - \tan^2\theta = 1$$

### **SECTION - B**

#### **21.** (d) 8

Explanation: Using mid-point formula,

$$(2, 6) = \left(\frac{3p + (2)}{2}, \frac{4 + 2q}{2}\right)$$

$$\Rightarrow$$
 2 =  $\frac{3p-2}{2}$ ; 6 =  $\frac{4+2q}{2}$ 

$$\Rightarrow$$
 3p = 4 + 2; 2q = 12 - 4

$$\Rightarrow$$
 3p = 6: 2a = 8

$$\Rightarrow p = 2; q = 4$$

$$\therefore pq = 2 \times 4 = 8$$

#### **22.** (c) 2:1

**Explanation:** In  $\triangle$ BAC, DE || AC.

$$\therefore \qquad \qquad \frac{BE}{EC} = \frac{BD}{DA} \qquad \qquad ...(i)$$

[By basic proportionality theorem]

Also, in  $\Delta$ BAP, DC || AP.

$$\therefore \qquad \frac{BC}{CP} = \frac{BD}{DA} \qquad ....(ii)$$

From eqs. (i) and (ii), we get

$$\frac{BE}{EC} = \frac{BC}{CP}$$

$$\Rightarrow \frac{BE}{CE} = \frac{BC}{BP - BC}$$

$$\therefore \frac{BE}{EC} = \frac{6}{6 - 4} = \frac{4}{2}$$
 [given]
$$= \frac{2}{1} = 2:1$$

#### **23.** (b) 4663

Explanation: We have,

$$520 = 2 \times 2 \times 2 \times 5 \times 13$$
  
 $468 = 2 \times 2 \times 3 \times 3 \times 13$ 

Number exactly divisible by 520 and 468

= LCM (520, 468)  
= 
$$2^3 \times 3^2 \times 5 \times 13 = 4680$$

.. Required number

#### **24.** (b) 9

**Explanation:** We known:

Sum of zeroes = 
$$-\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

$$\Rightarrow \qquad 3 = -\frac{(-k)}{3}$$

$$\Rightarrow \qquad k = 9$$

#### 25. (c) Parallel

**Explanation:** 

Here, 
$$\frac{4}{12} = \frac{3}{9} \neq \frac{6}{15}$$
 i.e.,  $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ 

.: Given pair of equations represent parallel lines.

#### **26.** (b) 21 m

**Explanation:** Let the inner radius of the circular path be r and its outer radius be R.

Then, 
$$2\pi R - 2\pi r = 132 \text{ m}$$
 (Given)  

$$\Rightarrow 2\pi (R - r) = 132$$

$$\Rightarrow R - r = \frac{132}{2\pi} = 21$$

 $\therefore$  Width of the path = 21 m

**27.** (d) 
$$\frac{3}{20}$$

**Explanation:** Total number of tickets in the bag = 20

Number of tickets greater than 15 and multiple of 5 are {20, 25, 30} *i.e.*, 3

 $\therefore$  P(greater than 15 and multiple of 5) =  $\frac{3}{20}$ 

#### **28.** (b) $4\sqrt{mn}$

**Explanation:** Given,  $m = \tan \theta + \sin \theta$  and  $n = \tan \theta - \sin \theta$ 

$$\therefore m^2 - n^2 = (\tan \theta + \sin \theta)^2 - (\tan \theta - \sin \theta)^2$$
$$= 4 \tan \theta \sin \theta \qquad ... (i)$$

Now, 
$$4\sqrt{mn} = 4\sqrt{(\tan\theta + \sin\theta)(\tan\theta - \sin\theta)}$$
  
=  $4\sqrt{\tan^2\theta - \sin^2\theta}$   
=  $4\sin\theta\sqrt{\sec^2 - 1} = 4\sin\theta\tan\theta$ 

From (i),

$$m^2 - n^2 = 4\sqrt{mn}$$

# **29.** (c) $\frac{7}{2}$ sq. units

#### **Explanation:**

Required area = ar ( $\triangle$ ABD)

$$= \frac{1}{2} \times BD \times \text{perpendicular distance of A}$$

$$= \frac{1}{2} \times \{4 - (-3)\} \times 1$$

$$= \frac{1}{2} \times 7 \times 1$$

$$= \frac{7}{2} \text{ sq. units}$$

# **30.** (c) $\frac{3}{2}$

Explanation: Here,

$$\frac{AB}{BC} = \cot 45^{\circ} = 1$$

and, 
$$\frac{BD}{\Delta D} = \sin 30^{\circ} = \frac{1}{2}$$

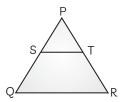
So, 
$$\frac{AB}{BC} + \frac{BD}{AD} = 1 + \frac{1}{2} = \frac{3}{2}$$

# **31.** (b) $12\pi$ cm<sup>2</sup>

Explanation: Here, AP = PQ = QB = 
$$\frac{AB}{3}$$
 = 4 cm  
 $\therefore$  Area of shaded region =  $2 \times \left[ \frac{\pi}{2} (4)^2 - \frac{\pi}{2} \times (2)^2 \right]$   
=  $2 \times [8\pi - 2\pi]$   
=  $12\pi$  cm<sup>2</sup>

#### **32.** (c) 10.5 cm

**Explanation:** ST || QR,  $\frac{PS}{SQ} = \frac{3}{5}$  and PR = 28 cm.



By using basic proportionality theorem, we get

$$\frac{PS}{SQ} = \frac{PT}{TR} \Rightarrow \frac{PS}{SQ} = \frac{PT}{PR - PT}$$

$$\Rightarrow \frac{3}{5} = \frac{PT}{28 - PT} \Rightarrow 3(28 - PT) = 5PT$$

$$\Rightarrow 84 = 5PT + 3PT$$

$$\therefore PT = \frac{84}{8} = 10.5$$

Hence, the length of PT is 10.5 cm.

# **33.** (a) $2\sqrt{3}$ , $\frac{2}{\sqrt{3}}$

#### **Explanation:**

Let 
$$p(x) = \sqrt{3}x^2 - 8x + 4\sqrt{3}$$
  
 $= \sqrt{3}x^2 - 2x - 6x + 4\sqrt{3}$   
 $= x(\sqrt{3}x - 2) - 2\sqrt{3}(\sqrt{3}x - 2)$   
 $= (x - 2\sqrt{3})(\sqrt{3}x - 2)$ 

To find zeroes of p(x),

Put 
$$p(x) = 0$$
  

$$\Rightarrow (x - 2\sqrt{3})(\sqrt{3}x - 2) = 0$$

$$\Rightarrow x = 2\sqrt{3}, \frac{2}{\sqrt{2}}$$

#### **34.** (a) 4

#### Explanation: Case 1:

P(getting a non-defective pen)

$$=\frac{x}{40}=y$$
 ...(i)

Case II: Number of non-defective pens

$$= x + 20$$

 $\therefore$  Total number of pens = 60

.. P(getting a non-defective pen)

$$= \frac{x + 20}{60} = 4y$$
 ...(ii)

From (i) and (ii),

 $\Rightarrow$ 

$$\frac{4x}{40} = \frac{x+20}{60}$$
$$6x = x + 20 \Rightarrow x = 4$$

35. (b) Infinite

**Explanation:** Here

$$\begin{aligned} \frac{a_1}{a_2} &= \frac{1}{2}, \\ \frac{b_1}{b_2} &= \frac{2}{4} = \frac{1}{2}; \text{ and} \\ \frac{c_1}{c_2} &= \frac{-8}{-16} = \frac{1}{2} \end{aligned}$$

Since

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

.. The given pair of linear equations has infinitely many solutions.

### **36.** (b) (3, -2)

Explanation: We know,

Centroid of a triangle

$$= \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

$$= \frac{-1 + 2 + 8}{3}, \frac{-3 + 1 + (-4)}{3}$$

$$= \left(\frac{9}{3}, \frac{-6}{3}\right) = (3, -2)$$

# **37.** (c) $\frac{36}{13}$ cm

#### **Explanation:**

In AABC, using Pythagoras theorem

$$AB^{2} = AC^{2} + BC^{2}$$

$$= (3 + 2)^{2} + (12)^{2}$$

$$= 25 + 144$$

$$= 169$$

$$AB = 13$$

Putting AB =13 in (i), we get

$$\frac{13}{3} = \frac{12}{DE}$$

$$\Rightarrow DE = \frac{36}{13} cm$$

#### **38.** (b) 1

**Explanation:** We have,  $\tan A = \sqrt{3}$ 

Now,  $2 \sin A \cot A = 2 \sin 60^{\circ} \cot 60^{\circ}$ 

$$=2 \times \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} = 1$$

#### **39.** (c) (3, 5)

**Explanation:** The given lines are

$$x-3=0 \Rightarrow x=3$$

which is parallel to y-axis.

and 
$$y-5=0 \Rightarrow y=5$$
,

which is parallel to x-axis.

Hence, the lines intersect at (3, 5).

**40.** (c) 
$$-x^2 + 2x + 35$$

**Explanation:** Clearly, other zero =  $-\frac{35}{7}$  = -5

Thus, the zeroes are 7 and -5.

Hence, the required polynomial is given by k(x-7) (x+5) i.e.,  $k(x^2+5x-7x-35)$  i.e.,  $k(x^2-2x-35)$ 

Since, the shape of gate is always in the shape of downward parabola, therefore coefficient of  $x^2$  should be negative.

So, putting k = -1, we get the required polynomial as  $-x^2 + 2x + 35$ .

# SECTION - C

**41.** (a) 
$$3\sqrt{5}$$
 units

Explanation: The distance between P and Q

$$= \sqrt{(7-4)^2 + (3+3)^2}$$
$$= \sqrt{3^2 + 6^2} = \sqrt{9+36}$$
$$= \sqrt{45} = 3\sqrt{5} \text{ units}$$

**42.** (d) 
$$\left(\frac{22}{3}, \frac{11}{3}\right)$$

**Explanation:** Let the coordinates of X be (x, y). Then, by section formula,

Q(7,3) X R(8,5)  

$$x = \frac{1 \times 8 + 2 \times 7}{1+2} = \frac{8+14}{3} = \frac{22}{3}$$

$$y = \frac{1 \times 5 + 2 \times 3}{1+2} = \frac{5+6}{3} = \frac{11}{3}$$

Thus, the coordinates of X are  $\left(\frac{22}{3}, \frac{11}{3}\right)$ .

**43.** (b) 
$$\left(\frac{15}{2}, 4\right)$$

**Explanation:** The mid-point of Q and R is given by  $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Here,  $(x_1, y_1) = (7, 3)$  and  $(x_2, y_2) = (8, 5)$ 

$$\therefore \text{ mid-point} = \left(\frac{7+8}{3}, \frac{3+5}{2}\right) = \left(\frac{15}{2}, 4\right)$$

#### **44.** (c) 3:1

Explanation: Let Q divides the line segment joining P and R in the ratio k:1. Then, the

coordinates of Q will be 
$$\left(\frac{8k+4}{k+1}, \frac{5k-3}{k+1}\right)$$

$$k:1$$

$$(4,-3)$$

$$(7,3)$$

$$(8,5)$$

Thus, we have 
$$\left(\frac{8k+4}{k+1}, \frac{5k-3}{k+1}\right) = (7, 3)$$

$$\Rightarrow \frac{8k+4}{k+1} = 7$$
and 
$$\frac{5k-3}{k+1} = 3$$

Consider, 
$$\frac{8k+4}{k+1} = 7$$
  
 $\Rightarrow \qquad 8k+4 = 7k+7$   
 $\Rightarrow \qquad k = 3$ 

Hence, the required ratio is 3:1.

### **45.** (d) A straight line

Explanation: Clearly, distance between P and Q  $=3\sqrt{5}$  units

Also, distance between Q and R

$$= \sqrt{(8-7)^2 + (5-3)^2}$$
$$= \sqrt{(1)^2 + (2)^2}$$
$$= \sqrt{5}$$

And, distance between P and R

$$= \sqrt{(8-4)^2 + (5+3)^2}$$
$$= \sqrt{4^2 + 8^2} = \sqrt{16+64}$$
$$= \sqrt{80} = 4\sqrt{5} \text{ units}$$

Since, PQ + QR = PR

.. The given points are collinear and hence lie on a straight line.

#### **46.** (c) 36

**Explanation:** To find the maximum number of cars, we will find the HCF (792, 612) by prime factorization.

$$792 = 2 \times 2 \times 2 \times 3 \times 3 \times 11$$
  
 $612 = 2 \times 2 \times 3 \times 3 \times 17$ 

HCF = Product of the smallest power of each common prime factor in the numbers.

Therefore, HCF = 
$$2^2 \times 3^2 = 36$$

### **47.** (a) 39

**Explanation:** As the maximum number of cars that can be transported in one trailer = 36, so

we will require 
$$\frac{792}{36}$$
 = 22 trailers for model A

and 
$$\frac{612}{36}$$
 = 17 trailers for model B. Therefore,

a total of 22 + 17 = 39 trailers will be required for transporting all the cars.

# **48.** (d) 13464

**Explanation:** To find the LCM (792, 612), we will first find the prime factors and then the product of greatest power of each prime factor involved in the numbers.

$$792 = 2 \times 2 \times 2 \times 3 \times 3 \times 11$$

$$612 = 2 \times 2 \times 3 \times 3 \times 17$$
Therefore, LCM (792, 612)
$$= 2^{3} \times 3^{2} \times 11 \times 17$$

$$= 13464$$

### **49.** (c) 3

**Explanation:** 

$$792 = 2 \times 2 \times 2 \times 3 \times 3 \times 11$$

$$= 2^3 \times 3^2 \times 11$$

Therefore, the power of 2 in the prime factorization of 792 is 3.

# **50.** (b) 12

**Explanation:** The smallest multiple of 4 is 4 and the smallest multiple of 6 is 6.

To find LCM (4, 6), we will first find their prime factors.

$$4 = 2^2$$
;  $6 = 2^1 \times 3^1$ 

Therefore, 
$$LCM = 2^2 \times 3 = 12$$

