ORGANIC CHEMISTRY

Total Marks: 38

Max. Time: 40 min.

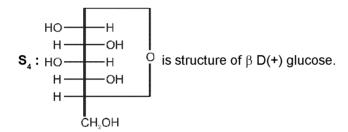
Topic: Biomolecules and Polemers

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.10

(3 marks 3 min.)


[30,30]

Match the Following (no negative marking) Q.11

(8 marks 10 min.)

[8, 10]

- 1. Suger (sucrose) is dextrorotatory (+66.5°) but the invert sugar is laevorotatory (-19.9°). It is due to:
 - (A) Mutarotation
 - (B) reducing nature of invert sugar
 - (C) invert sugar is a 1:1 mixture of D-glucose (52.7°) and D-Fructose (-92.4°) obtained by hydrolysis of sugar.
 - (D) Inversion of configuration of sucrose due to hydrolysis.
- $\mathbf{S_1}$: Sucrose has $\mathbf{C_1}$ – $\mathbf{C_2}$ glycosidic linkage between β –D–Glucose & α –D–Fructose. 2.
 - **S**₂: Glucose does gives positive test of 2, 4 DNP.
 - **S**_a: Pentacetate of glucose does not forms oxime.

- (A) F F T T
- (B) FFTF
- (C) FFFT
- (D) TTTT

- 3. Monomer of celluose is
 - (A) Fructose
- (B) Maltose
- (C) Sucrose
- (D) Glucose
- Observe the following reaction and find out that how many number of reactant stereoisomers can be 4. reduced to optically inactive meso products.

$$\begin{array}{cccc} \text{CHO} & & \text{CH}_2\text{OH} \\ \text{CHOH} & & \text{CHOH} \\ \text{CH}_2\text{OH} & & \text{CH}_2\text{OH} \\ \end{array}$$

- (A) 2

- (C) 6
- (D) 8

5. The following compound on hydrolysis will give

- (A) A pair of anomers
- (C) A pair of epimers

- (B) A pair of enantiomeris
- (D) A pair of molecules having common tautomer

6. Which of the following is a nonreducing sugar?

(A)
$$OHCH_2 - C - (CHOH)_3 - CH_2OH$$
 \parallel O

$$(D) \begin{picture}(200,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0$$

7. Find true and False from the following statements regarding carbohydrates

S₄: Cellulose is a reducing sugar.

S₂: Sucrose is an oligo sachharide.

S_a: A pair of diastereomeric aldoses which differ only in configuration at C-2 are anomers.

 $\mathbf{S}_{\mathbf{A}}^{\mathbf{A}}$: Osazone formation destroys the configuration at C-2 of an aldose, but does not affect the configuration of the rest of the molecule.

(A) TTTT

(B) TFTF

(C) FTFT

(D) FTTT

8. Which of the following amino acid is most basic :

(B)
$$H_2N - CH - C - NH - CH_2 - COOH$$

 CH_3

(C)
$$HOOC-CH_2-CH-COOH$$
 | NH_2

(D) HS
$$NH_2$$

9.* The correct statement(s) about biopolymer X is(are):

$$X = \begin{pmatrix} CH_2OH \\ CH_2OH \\ OH \\ H \\ OH \end{pmatrix} \begin{pmatrix} CH_2OH \\ OH \\ H \\ OH \end{pmatrix} \begin{pmatrix} CH_2OH \\ OH \\ H \\ OH \end{pmatrix}$$

- (A) It is a non-reducing sugar.
- (C) It has $\beta(C_1 C_2)$ glycosidic linkage.
- (B) It exhibits mutarotation.
- (D) Its hydrolysis product is D-Galactose.
- 10.* The correct statements about peptides are
 - (A) A dipeptide has one peptide link between two amino acids.
 - (B) By convention N-Terminus is kept at left and C-terminus at right in the structure of a peptide
 - (C) If only one amino group and one carboxylic acid, group are available for reaction, then only one dipeptide can forms.
 - (D) A polypeptide with more than hunderd amino acid recidues (mol. mass > 10,000) is called a protein

11. Column-I

- (A) D-Glucose
- (B) D-(+)Glyceraldehyde (Aldotriose)
- (Ascorbic acid) OH OH ÓН vitamin-C
- (E) 1,3-Dihydroxy propanone (Ketotriose)

Column-II

- (p) HIO₄ oxidation
- (q) NaBH₄ Reduction
- (r) Tollen's test positive
- (s) Readily water soluble

DPP No. #30

(A)

- 1.
- (C)
- 2.
- 7. (C)

(A)

- 3. (D)

(B)

5.

(D)

- 6. (C)

- 9.* (AC)
- 10.* (ABCD) 11. (A) - (p, q, r, s); (B) - (p, q, r, s); (C) - (p, s); (D) - (q, r); (E) - (p, q, r, s)

Hints & Solutions

DPP No. # 30

1. Sucrose
$$\xrightarrow{\text{H}_3\text{O}^{\oplus}}$$
 D-Glucose + D-Fructose $[\alpha] = +66.5$ $[\alpha] = +52.5$ $[\alpha] = -92.4$ net $[\alpha] = -19.9$

Celluose is the polymer of glucose

so in total 4 stereoisomers are reduced to meso products.

- 5. (D) The compound is sucrose which on hydrolysis gives equimolecular mixture of glucose and fructose.
- (C) It has cyclic acetal structure.
- 7. S₂ and S₄ are correct. S₁ and S₃ is incorrect because anomers are those which have difference in configuration at C-1.
- 8. 'A' contains more basic groups.
- 9.* It is non-reducing sugar because it lacks hemiactal linkage. Its hydrolysis product is β -D-Glucose.
- 10.* Dipeptide is formed by 1° amide linkage between 2 amino acid molecules.