

Shortcuts And Important Results To Remember

- 1 $|A|$ exists $\Leftrightarrow A$ is square matrix.
- 2 No element of principal diagonal in a diagonal matrix is zero.
- 3 If A is a diagonal matrix of order n , then
 - (a) Number of zeroes in A is $n(n-1)$
 - (b) If $d_1, d_2, d_3, \dots, d_n$ are diagonal elements, then

$$A = \text{diag} \{d_1, d_2, d_3, \dots, d_n\}$$
 and $|A| = d_1 d_2 d_3 \dots d_n$

$$A^{-1} = \text{diag} (d_1^{-1}, d_2^{-1}, d_3^{-1}, \dots, d_n^{-1})$$
 - (c) Diagonal matrix is both upper and lower triangular.
 - (d) $\text{diag} \{a_1, a_2, a_3, \dots, a_n\} \times \text{diag} \{b_1, b_2, b_3, \dots, b_n\}$

$$= \text{diag} \{a_1 b_1, a_2 b_2, a_3 b_3, \dots, a_n b_n\}$$
- 4 If $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, then $A^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ and

$$B^k = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}, \forall k \in \mathbb{N}.$$
- 5 If A and B are square matrices of order n , then
 - (a) $|kA| = k^n |A|$, k is scalar
 - (b) $|AB| = |A| |B|$
 - (c) $|kAB| = k^n |A| |B|$, k is scalar
 - (d) $|AB| = |BA|$
 - (e) $|A^T| = |A| = |A^\theta|$, where A^θ is conjugate transpose matrix of A
 - (f) $|A|^m = |A^m|$, $m \in \mathbb{N}$
- 6 Minimum number of zeroes in a triangular matrix is given by $\frac{n(n-1)}{2}$, where n is order of matrix.
- 7 If A is a skew-symmetric matrix of odd order, then $|A| = 0$ and of even order is a non-zero perfect square.
- 8 If A is involutory matrix, then
 - (a) $|A| = \pm 1$
 - (b) $\frac{1}{2}(I + A)$ and $\frac{1}{2}(I - A)$ are idempotent and

$$\frac{1}{2}(I + A) \cdot \frac{1}{2}(I - A) = 0$$
- 9 If A is orthogonal matrix, then $|A| = \pm 1$
- 10 To obtain an orthogonal matrix B from a skew-symmetric matrix A , then

$$B = (I - A)^{-1}(I + A) \text{ or } B = (I - A)(I + A)^{-1}$$
- 11 The sum of two orthogonal matrices is not orthogonal while the sum of two symmetric (skew-symmetric) matrices is symmetric (skew-symmetric)
- 12 The product of two orthogonal matrices is orthogonal while the product of two symmetric (skew-symmetric) matrices need not be symmetric (skew-symmetric)
- 13 The adjoint of a square matrix of order 2 can be easily obtained by interchanging the principal diagonal elements and changing the sign of the other diagonal.
 i.e., If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $\text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
- 14 If $|A| \neq 0$, then $|A^{-1}| = \frac{1}{|A|}$.
- 15 If A and B are invertible matrices such that $AB = C$, then

$$|B| = \frac{|C|}{|A|}$$
- 16 Commutative law does not necessarily hold for matrices.
- 17 If $AB = -BA$, then matrices A and B are called anti-commutative matrices.
- 18 If $AB = O$, it is not necessary that atleast one of the matrix should be zero matrix.
 For example, If $A = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$, then

$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 while neither A nor B is the null matrix.
- 19 If A, B and C are invertible matrices, then
 - (a) $(AB)^{-1} = B^{-1}A^{-1}$
 - (b) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$
- 20 If B is a non-singular matrix and A is any square matrix, then $\det(B^{-1}AB) = \det(A)$
- 21 If A is a non-singular square matrix of order n , then $\text{adj}(\text{adj } A) = |A|^{n-2} A$
- 22 If A is a non-singular square matrix of order n , then

$$\underbrace{|\text{adj}(\text{adj}(\text{adj}(\dots(\text{adj}(\text{adj } A))))|}_{m \text{ times}} = |A|^{(n-1)^m}$$
- 23 If $A = \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix}$; $A^m = O, \forall m \geq 2$

$$\therefore (A + I)^n = I + nA$$
- 24 If A and B are two symmetric matrices, then $A \pm B, AB + BA$ are symmetric matrices and $AB - BA$ is a skew-symmetric matrix.
- 25 If A and B are two square matrices of order n and λ be a scalar, then
 - (i) $\text{Tr}(\lambda A) = \lambda \text{Tr}(A)$
 - (ii) $\text{Tr}(A \pm B) = \text{Tr}(A) \pm \text{Tr}(B)$
 - (iii) $\text{Tr}(AB) = \text{Tr}(BA)$
 - (iv) $\text{Tr}(A) = \text{Tr}(A')$
 - (v) $\text{Tr}(I_n) = n$
 - (vi) $\text{Tr}(O) = 0$
 - (vii) $\text{Tr}(AB) \neq \text{Tr}(A) \cdot \text{tr}(B)$

contd...

26 If rank of a matrix A is denoted by $p(A)$, then

- (i) $p(A) = 0$, if A is zero matrix.
- (ii) $p(A) = 1$, if every element of A is same.
- (iii) If A and B are square matrices of order n each and $p(A) = p(B) = n$, then $p(AB) = n$
- (iv) If A is a square matrix of order n and $p(A) = n - 1$, then $p(\text{adj } A) = 1$ and if $p(A) < n - 1$, then $p(\text{adj } A) = 0$

27 System of planes

$$a_{11}x + a_{12}y + a_{13}z = b_1,$$

$$a_{21}x + a_{22}y + a_{23}z = b_2$$

and

$$a_{31}x + a_{32}y + a_{33}z = b_3$$

Augmented matrix $C = [A : B]$ and if Rank of $A = r$ and Rank of $C = s$, then

- (i) If $r = s = 1$, then planes are coincident
- (ii) If $r = 1, s = 2$, then planes are parallel
- (iii) If $r = s = 2$, then planes intersect along a single straight line

(iv) If $r = 2, s = 3$, then planes form a triangular prism

(v) If $r = s = 3$, then planes meet at a single point

28 If P is an orthogonal matrix, then $\det(P) = \pm 1$

- (i) P represents a reflection about a line, then $\det(P) = -1$.
- (ii) P represents a rotation about a point, then $\det(P) = 1$.

29 **Cayley-Hamilton Theorem** : Every matrix satisfies its characteristic equation.

For Example, Let A be a square matrix, then $|A - \lambda I| = 0$ is the characteristic equation for A .

If $\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$ is the characteristic equation for A , then $A^3 - 6A^2 + 11A - 6I = 0$. Roots of characteristic equation for A are called eigen values of A or characteristic roots of A or latent roots of A . If λ is a characteristic root of A , then λ^{-1} is characteristic root of A^{-1} .