

S.No.	CONTENTS	Page
1.	Introduction	141
2.	Concentration of the ore	141
3.	Conversion of concentrated	144
	ore into oxide form	
4.	Reduction of the metal oxide	146
5 .	Refining of the metal	149
6.	Ellingham diagram	156
7.	Exercise-I (Conceptual Question)	161
8.	Exercise-II (Previous Years Questions)	165
9.	Exercise-III (Analytical Questions)	167
10.	Exercise-IV (Assertion & Reason)	168

Е

NEET SYLLABUS

General Principles and Processes of Isolation of Elements: Principles and methods of extraction-concentration, oxidation, reduction electrolytic method and refining; occurrence and principles of extraction of aluminium, copper, zinc and iron.

OBJECTIVES

After studying this unit, you will be able to:

- explain the terms minerals, ores, concentration, benefaction, calcination, roasting, refining, etc.;
- understand the principles of oxidation and reduction as applied to the extraction procedures;
- apply the thermodynamic concepts like that of Gibbs energy and entropy to the principles of extraction of Al, Cu, Zn and Fe;
- explain why reduction of certain oxides like Cu_2O is much easier than that of Fe_2O_3 ;
- explain why CO is a favourable reducing agent at certain temperatures while coke is better in some other cases;
- explain why specific reducing agents are used for the reduction purposes.

An excellent man, like precious metal, is in every way invariable; A villain, like the beams of a balance, is always varying, upwards and downwords.

John Locke

METALLURGY

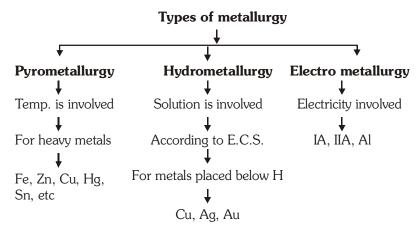
4.1 INTRODUCTION

Metallurgy: The branch of chemistry which deals with the method of extraction of metals from their ores by profitable means.

Metal: The element which tends to form positive ion is called a metal.

Minerals : The various compounds of metals which occur in the earth's crust and are obtained by mining are called minerals. In earth crust order of abundance of elements is. O > Si > Al > Fe

A mineral may be single compound or a mixture.


Ore: The mineral from which a metal can be extracted **profitably** and **easily** is called an ore.

All ores are minerals but all minerals are not ores. (T/F)

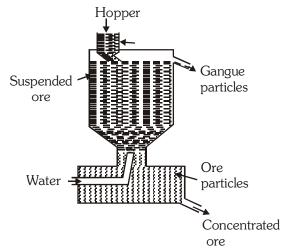
Type of Ores:

- **(I) Combined Ore:** Metals placed above H in electrochemical series are generally reactive i.e. why they generally found in combined state.
 - (a) Halide ore / Sulphate ore / Oxy ore : Metals are highly reactive (Li \rightarrow Mg)
 - **(b) Oxide ore** : Reactive metal (Al to Sn)
 - (c) Sulphide ore: Metal placed near H or below H. (Pb, Hg, Cu, Ag)
- (II) Native Ore: Metal placed below H in electrochemical series are generally found in native state. (Aq, Au, Cu, Pt etc.)

Gangue or matrix: The undesirable impurities present in an ore are called **gangue**.

4.2 STEPS INVOLVED IN THE EXTRACTION OF METALS

The extraction of a metal from its ore is completed in the following four steps.


- (A) Concentration of the ore
- (B) Conversion of concentrated ore into oxide form.
- (C) Reduction of the metal
- (D) Refining of the metal.

(A) Concentration of the ore or dressing or benefaction

The removal of impurities from the ore is called its concentration or to increase the concentration of ore in ore sample. Two process – (1)Physical (2) Chemical

(1) PHYSICAL:

(i) Gravity separation (Levigation): This method of concentration of the ore is based on the difference in the specific gravities of the ore and the gangue particles. Powdered ore is agitated with a running stream of water. The lighter gangue particles are taken away by water while heavier ore particles settle down. Ex. Oxygenated ore

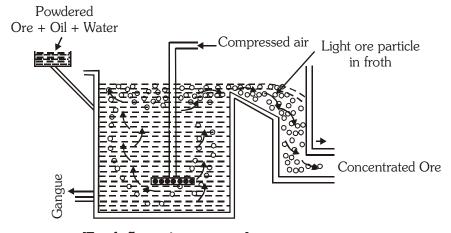
Hydraulic classifier

(ii) Froth Floatation method

This method is mainly employed for the concentration of sulphide ores.

The method is based on the different wetting characteristics of the gangue and the sulphide ore with water and oil. The gangue preferentially wetted by water and the ore by oil.

The crushed ore along with water is taken in a floatation cell. Various substances are added depending on the nature of the ore and a current of air is blown in. The substances added are usually of three types.


- **(a) Frothers:**—They generate a stable froth which rises to the top of the tank. Example of frother is pine oil, Eucalyptus oil, fatty acids etc.
- **(b)** Collectors or floating agents:— These attach themselves by polar group to the granules of the ores which then become water repellent and pass on into the froth.

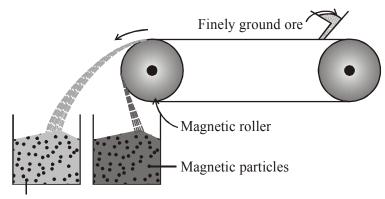
Example: sodium ethyl xanthate, pine oil and fatty acid.

- **(c) Froth stabilisers**: To stabilise froth.
 - Ex. Cresol, Aniline etc.
- **(d) Depressants :-** These reagents activate or depress the floatation property and help in the separation of different sulphide ores present in a mixture.
 - e.g. NaCN.

Impurity of ZnS in PbS ore removed by NaCN

$$NaCN + [PbS + ZnS] \rightarrow Na_{o}[Zn(CN)_{d}] + PbS \rightarrow form froth$$

[Froth floatation process]


ALLEN

- Sometimes, it is possible to separate two sulphide ores by adjusting proportion of oil to water or by using 'depressants'.
- For example, in case of an ore containing ZnS and PbS, the depressant used is NaCN. It selectively prevents ZnS from coming to the froth but allows PbS to go along with the froth.

(iii) Magnetic separation:-

If either the ore or the gangue (one of these two) is capable of being attracted by a magnetic field, then such separations are carried out (e.g. in case of iron ores)

- e.g. SnO₂ having the impurities of FeWO₄ + MnWO₄(Wolframite)
 - FeO.Cr₂O₃ having the impurities of SiO₂.

Non-magnetic particles

2. CHEMICAL SEPARATION (LEACHING): In this process we use suitable agent which react with ore to form water soluble complex while impurities remain insoluble. Applicable for Al, Ag,Au.

(a) Aluminium :
$$\begin{bmatrix} \text{Red Bauxite} \rightarrow \text{Al}_2\text{O}_3.2\text{H}_2\text{O} + \text{Fe}_2\text{O}_3 \text{ (Major impurity)} \\ \text{White Bauxite} \rightarrow \text{Al}_2\text{O}_3.2\text{H}_2\text{O} + \text{SiO}_2 \text{ (Major impurity)} \end{bmatrix}$$

- (I) RED BAUXITE: Two processes
 - (i) Baeyer's process: NaOH is used.

$$Al_2O_3 + NaOH \longrightarrow NaAlO_2 \xrightarrow{excess H_2O} Al(OH)_3 + NaOH$$

$$FeO + NaOH \longrightarrow inso lub le$$

$$\downarrow$$
Basic

(ii) Hall's process: Na₂CO₃ is used.

$$\mathsf{Al_2O_3} + \mathsf{Na_2CO_3} {\longrightarrow} 2\mathsf{NaAlO_2} \xrightarrow{\ \ \mathsf{HOH} \ \ } \mathsf{Al(OH)_3} + \mathsf{Na_2CO_3}$$

(II) WHITE BAUXITE: One process.

Serpeck's process: (C+N_o) is used

$$\begin{split} &\text{Al}_2\text{O}_3 + \text{N}_2 \xrightarrow{1800^{\circ}\text{C}} \text{AlN} \xrightarrow{H_2\text{O}} \text{Al}(\text{OH})_3 + \text{NH}_3 \uparrow \text{[not in NCERT]} \\ &\text{C} + \text{SiO}_2 \xrightarrow{} \text{CO}_2 \uparrow + \text{Si} \uparrow \,. \end{split}$$

(b) Ag and Au (CYANIDE PROCESS)

(II) Au Au + KCN +
$$H_2O \xrightarrow{O_2} K [Au (CN)_2] + KOH K[Au (CN)_2] + KOH + Zn \longrightarrow K_2 ZnO_2 + KCN + $H_2O + Au \downarrow$$$

(B) Conversion of concentrated ore into oxide form

Calcination and roasting

(a) Calcination: Calcination is a process in which ore is heated, generally in the absence of air, to expel water from a hydrated or hydroxide ore and oxide or carbon dioxide from a carbonate ore at temperature below their melting points.

For Example: All carbonates, hydrated ore and hydroxide ore

Bauxite
$$Al_2O_3$$
. $2H_2O \rightarrow Al_2O_3 + 2H_2O$, $2Al(OH)_3 \rightarrow Al_2O_3 + 3H_2O$

Haematites
$$2Fe_2O_3$$
. $3H_2O \rightarrow 2Fe_2O_3 + 3H_2O$

$$\begin{array}{lll} \text{Limestone} & \text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \\ \text{Siderite} & \text{FeCO}_3 \rightarrow \text{FeO} + \text{CO}_2 \\ \text{Calamine} & \text{ZnCO}_3 \rightarrow \text{ZnO} + \text{CO}_2 \\ \text{Cerussite} & \text{PbCO}_3 \rightarrow \text{PbO} + \text{CO}_2 \\ \end{array}$$

Malachite green
$$CuCO_3 \cdot Cu(OH)_2 \rightarrow CuO + CO_2 + H_2O$$

Advantages of Calcination :-

- (i) Moisture is removed.
- (ii) Organic matter is destroyed
- (iii) The hydroxide and carbonates ores are converted into their oxides.
- (iv) The ore become porous and easily workable
- **(b) Roasting:** The removal of the excess sulphur contained in sulphide ores in the form of SO_2 by heating in an excess of air is called roasting.

The concentrated sulphide ore is heated in reverberatory furnace, below its melting point in the presence of an excess of air with or without the addition of an external substance.

$$2ZnS + 3O_{2} \rightarrow 2ZnO + 2SO_{2} \uparrow$$

$$ZnS + 2O_{2} \rightarrow ZnSO_{4} \rightarrow ZnO + SO_{3} \uparrow$$

$$PbS + O_{2} \xrightarrow{Roasting} PbO + SO_{2} \uparrow$$

Thermal reduction

Some less stable metal oxide further decompose into metal and oxygen.

$$Ag_2S + O_2 \xrightarrow{Roasting} Ag_2O \xrightarrow{300^{\circ}C} 2Ag + \frac{1}{2}O_2 \uparrow$$

$$HgS + O_2 \xrightarrow{Roasting} HgO \xrightarrow{400^{\circ}C} Hg + \frac{1}{2}O_2$$

Partial roasting

$$Fe_2O_3 + FeO$$

Haematite

$$Fe_3O_4 = Fe_2O_3 + FeO$$

Magnetite

$$FeCO_3 \xrightarrow{\Delta} FeO + CO_2 \uparrow$$

Siderite

Roasting \rightarrow to prevent wastage of Fe as slag in reduction step

$$2\text{FeO} + \frac{1}{2}\text{O}_2 \rightarrow \text{Fe}_2\text{O}_3$$
 (It does not form slag)

$$FeO + SiO_2 = FeSiO_3$$

(Flux) (Impurity) (Slag)

Advantages of Roasting :-

Excess of sulphur is removed as volatile oxide.

$$S + O_2 \rightarrow SO_2 \uparrow$$
 (air)

- The metal sulphide is converted into metal oxide. (ii)
- (iii) Impurities of arsenic, antimony & phosphorous are removed as their volatile oxides.

$$\mathrm{Sb_4} + \mathrm{3O_2} \rightarrow \mathrm{2Sb_2O_3} \uparrow$$

$$As_4 + 3O_2 \rightarrow 2As_2O_3 \uparrow$$

$$P_4 + 3O_2 \rightarrow 2P_2O_3 \uparrow$$

• For PbS, CuS and HgS partial roasting is carried out because these sulphide ore easily convert into metal by auto reduction process.

BEGINNER'S BOX-1

1. Match the following:-

Main element

- (A) Malachite
- (P) Fe
- (B) Siderite
- (Q) Pb
- (C) Cerrusite
- (R) Zn
- (D) Pyrolussite
- (S) Cu
- (E) Wurtzite
- (T) Mn
- (1) A-S, B-Q, C-P, D-T, E-R

(2) A-S, B-P, C-Q, D-T, E-R

(3) A-Q, B-S, C-P, D-T, E-R

- (4) A-R, B-Q, C-P, D-T, E-S
- 2. Assertion: Froth floatation is concentration method mainly used for sulphide ores.

Reason: Metal sulphides are highly soluble in water.

(1) A

(2) B

(3) C

- (4) D
- 3. Assertion: In cyanide process, the leaching is accomplished using NaCN.

Reason: CN⁻ ion reduces Ag, Au & Zn ions in the process.

(1) A

- (4) D
- 4. Match the ores listed in Column-I with their correct chemical formula listed in Column-II.

Column I Column II

- (A) Cassiterite
- (p) FeCO₃
- (B) Siderite
- (q) SnO_o
- (C) Cerussite
- (r) PbSO₄
- (D) Anglesite (1) A-q, B-p, C-s, D-r
- (s) PbCO₃ (2) A-r, B-p, C-s, D-q
- (3) A-p, B-q, C-s, D-r (4) A-q, B-p, C-r, D-s

- **5.** Which of the following contains both Mg & Ca:
 - (1) Magnesite
- (2) Calamine
- (3) Carnelite
- (4) Dolomite

- **6.** Argentite is an ore of:-
 - (1) Iron
- (2) Gold
- (3) Platinum
- (4) Silver
- 7. If Bauxite consists of SiO₂ as impurity, this process is employed :-
 - (1) Hall's process
- (2) Bayer's process
- (3) Hoope's process
- (4) Serpeck's process

- **8.** The impurities present in the ore is called:-
 - (1) Slag
- (2) Flux
- (3) Alloy
- (4) Gangue

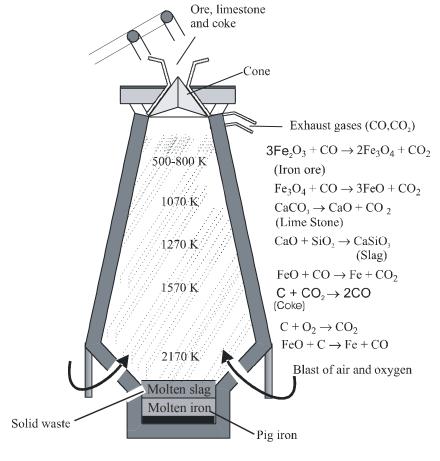
9. $Ag_2S + NaCN \longrightarrow A, A + Zn \longrightarrow B$

B is a metal. Hence A and B:

- (1) Na₂ [Zn(CN)₄], Zn
- (2) Na[Ag(CN)₂], Ag
- (3) $Na[Ag(CN)_{a}]$, Ag
- (4) $Na_3[Ag(CN)_4]$, Ag

- 10. Chemical leaching is useful in the concentration of:-
 - (1) bauxite
- (2) copper pyrities
- (3) cassiterite
- (4) None

(C) Reduction to the metal:


The calcined or roasted ore is then reduced to the metallic state by either of the following method:

- (I) Chemical reduction:
- (i) Reduction by carbon (Smelting)

"Reduction of the oxide with carbon at high temperature is known as smelting".

The oxides of less electropositive metals like Pb, Zn, Fe, Sn, Cu etc. are reduced by strongly heating them with coal or coke, in the blast furnace.

Example - Reaction in blast furnance :-

FLUX: Substance used to convert non fusible impurities into fusible one. Three types of flux are used.

(a) Acidic Flux: Substance used to remove basic impurities (metal oxide)

For example
$$CaO + \underline{SiO}_2 \longrightarrow CaSiO_3$$
 (basic impurity) (acidic flux) (Slag)

Acidic flux are non metal oxide (SiO_2 , P_2O_5 etc.)

(b) Basic flux: Substance used to remove acidic impurities (non metal oxide)

For example
$$CaO + SiO_2 \longrightarrow CaSiO_3$$

 \downarrow (basic flux) (acidic impurities) Slag

Basic flux are metal oxide. (CaO, MgO, etc.)

(c) Neutral flux : Substance used in electrolytic reduction to decrease the fusion temperature and to increase the conductivity of the solution by providing free ions.

For example :
$$(Na_3AlF_6 + CaF_2)$$
, $CaCl_2$ etc.

Smelting in Cu-metallurgy

(ii) Alumino thermite process or thermite welding process: In this process those metal oxide will be reduced which required high temperature and at high temperature carbon react with metal to from metal carbide.

In this process we use aluminium as a reducing agent due to :-

- (i) Al has greater affinity towards oxygen as it forms most stable oxide (Al₂O₃)
- (ii) This reaction is highly exothermic in nature and once it start it will continue till all the metal oxide is reduced into metal.

$$\begin{array}{lll} \text{For Cr, Mn, Fe:} & \text{(a)} & \text{Cr}_2 O_3 + \text{Al} & \longrightarrow \text{Al}_2 O_3 + 2 \text{Cr} \\ & \text{(b)} & \text{Fe}_2 O_3 + \text{Al} & \longrightarrow \text{Al}_2 O_3 + 2 \text{Fe} \end{array}$$

Note: Reaction (b) is used in welding of railway tracks.

(II) Self reduction

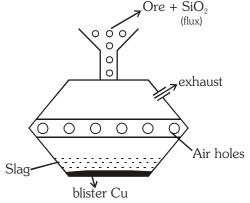
Compounds of certain metals are reduced to metal without using any additional reducing agent. ores of Cu, Pb, Hg etc.

Their sulphide ores are partially roasted to give some oxide. This oxide is now reduced to the metal by the remaining sulphide ore at elevated temperatures in the absence of air. The process is known as self reduction.

Self reduction for Pb:-

$$2PbS + 3O_2 \xrightarrow{Roasting} 2PbO + 2SO_2 \uparrow$$
 (Galena) (air)

$$PbS + 2PbO \xrightarrow{High \ temp} 3Pb + SO_2 \uparrow$$


(Self reduction)

Self reduction in Cu Metallurgy or bessemerisation

$$Cu_2S + FeS + SiO_2 \longrightarrow Blister copper + slag$$
(flux)

 $FeS + O_2 \longrightarrow FeO + SO_2 \uparrow$
 $FeO + SiO_2 \longrightarrow FeSiO_3$ (slag)

gangue flux
 $Cu_2S + O_2 \longrightarrow Cu_2O + SO_2$
 $Cu_2S + 2Cu_2O \longrightarrow 6Cu + SO_2 \uparrow$

Bessemer convertor

Self reduction for Cu :- $2 \text{ Cu}_2\text{O} + \text{Cu}_2\text{S} \xrightarrow{\Delta} 6 \text{ Cu} + \text{SO}_2$

(III) Metal displacement method : In this method, compound is reacted with a more electropositive & more reactive metal which displaces, the metal from the solution.

For Example
$$CuSO_4 + Zn \longrightarrow ZnSO_4 + Cu$$

Kroll's Process

$$TiCl_4 + Mg \longrightarrow 2MgCl_2 + Ti$$
 (Mg acts as reducing agent)

(IV) Electrolytic reduction

This process is mainly used for the extraction of highly electropositive metals. I A, II A & Al Electrolysis is carried out in a large cell and a small amount of another suitable electrolyte is added which:

- (a) Lowers the melting point of the main electrolyte
- (b) Enhances its conductivity
- (c) Reduces corrosion troubles

e.g. Manufacture of metallic sodium (Down's process)

Molten NaCl containing a little ${\rm CaCl_2}$ is electrolysed between graphite anode and iron cathode. The various reactions that take place are :

On Fusion : NaCl
$$\rightleftharpoons$$
 Na⁺ + Cl⁻ (Ions become mobile)

On Electrolysis : At Cathode :- Na⁺ +
$$e^- \rightarrow$$
 Na (reduction) (Metallic sodium)
At Anode :- $2Cl^- \rightarrow Cl_2$ (g) + $2e^-$

Hall heroult process:

This process is used for extraction of Al from alumina. The extraction of Al from Al₂O₃ is quite difficult because

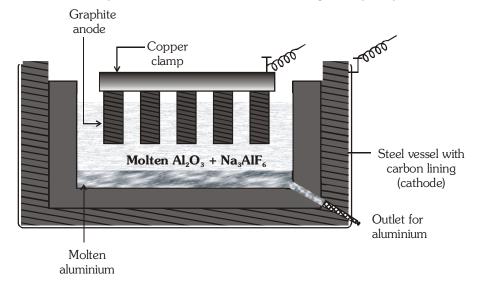
- (i) Fusion temperature of Alumina is quite high (2050°C). Even more than boilling point of Al (1150°C).
- (ii) It is a bad conductor of electricity. To overcome these difficulties we mix some amount of neutral flux $[Na_3AlF_6 + CaF_2]$. Neutral flux provides free ions to the solution which decreases the fusion temperature of Alumina from $2050^{\circ}C$ to $950^{\circ}C$.

(i) From cryolite \rightarrow AlF₃ \longrightarrow Al+3 + 3F⁻

At cathode : $Al^{+3} + 3e^{-} \rightarrow Al$ (reduction)

At anode: $2 F^{\scriptscriptstyle -} - 3 e^{\scriptscriptstyle -} \ \, \rightarrow \frac{3}{2} \, F_{_2}$

 $F_2 \text{ reacts with } Al_2O_3 \\ \qquad \qquad 3F_2 + Al_2O_3 \\ \longrightarrow 2AlF_3 + \frac{3}{2}O_2$


So at anode O_2 gas is liberated which on reaction with graphite anode convert into CO_2 & destroy the anode.

$$C + O_2 \longrightarrow CO_2 \uparrow$$

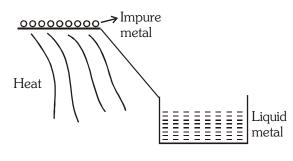
(ii) From Al₂O₃

At Cathode: Al⁺³ + 3e⁻ \rightarrow Al (reduction) At Anode: C(s) + 2O⁻² \rightarrow CO₀(g) + 4e⁻

The main drawback of this process it that anode should be changed frequently.

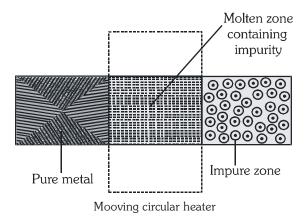
REFINING OF METALS

Metals obtained by the reduction of its compound still contains some objectionable substance and have to be refined. Depending upon the nature of the metal and impurities, the following methods are used for purification of the metals.


(I) Physical Process:

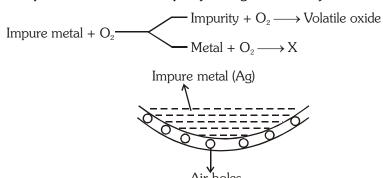
(i) Liquation: This method is used for the refining of metals having low melting point and are associated with high melting impurities.

Ex. Pb, Sn, Sb and Bi.


The impure metal is heated on the sloping hearth of a furnace.

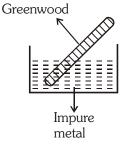
The pure metal flows down leaving behind the non-fusible impurities on the hearth.

- **(ii) Distillation**: Metals having low boiling point are refined by this method, for example, zinc, cadmium and mercury.
- **(iii) Zone refining**: Metals of very high purity are obtained by zone refining. This refining method is based on the fact that impurities tend to remain dissolved in molten metal.


Ge, Si and Ga used as semiconductors are refined in this manner.

(II) CHEMICAL PROCESS:-

(i) Cupellation: This process is used to purify silver containing the impurities of Pb.


This process is used when impurity have greater affinity towards O₂ while metal does not have.

(ii) **Poling:** Used to purify Cu, Pb.

This process is used for the metal having the impurity of their own oxide. In this process a green wooden pole is heated with molten metal, which provide C and H to metal oxide which reduce impurity of metal oxide to metal .

$$\begin{array}{ccc} 2\text{Cu} & + \text{O}_2 & \longrightarrow & \text{Cu}_2\text{O} \uparrow \\ 2\text{Cu}_2\text{O} & + \text{CH}_4 & \longrightarrow & 6\text{Cu} + \text{CO} + 2\text{H}_2 \uparrow \end{array}$$

(iii) Bessemerisation : Actually it is the key principle involve to removal of impurities by oxidation with air being blown oxidise to molten metal.

Impure metal is heated in a furnace and a blast of compressed air is blown which oxidise the impurity into their oxides and that can be removed in the form of slag .

(III) ELECTRO-REFINING OF METALS

Metals such as Cu, Ag, Zn, Sn, Pb, Al, Ni, Cr are refined by this method.

The impure metal is made the anode of an electrolytic cell, while cathode is thin plate of pure metal.

Electrolyte is the solution of a salt of the metal.

On passing the electric current pure metal from the anode dissolves and gets deposited at the cathode.

The soluble impurities go into the solution while insoluble or less electropositive impurities settle down below the anode as **anode mud** or sludge. For Example

- Electrorefining of Copper

Anode: Blister copper (98%)

Cathode : Pure copper

Electrolyte : An aqueous solution of CuSO₄ (15%) + 5% dil H₂SO₄

- Electrorefining of Silver

Anode : Impure silver Cathode : Pure silver

Electrolyte : Aq AgNO₃ + 1% dil HNO₃ on passing electricity impure anode

dissolves and pure Ag is deposited at the cathode.

- Electrorefining of Pb (Bett's process)

Anode : Impure lead., Cathode : Pure lead.

Electrolyte : A mixture of $PbSiF_6$ and H_2SiF_6

- Electrorefining of Al (Hoope's process)

Anode : Impure Al, Cathode : Pure Al Electrolyte : A mixture of Na₃AlF₆ + CaF₂

(IV) Vapour Phase Refining (Thermal decomposition)

(i) Van - Arkel process :

This method is very useful for removing all the oxygen & nitrogen present in the form of impurity.

- (i) Employed to get metal in very pure form of small quantities.
- (ii) In this method, the metal is converted into a volatile unstable compound
- (e.g.iodide), and impurities are not affected during compound formation.
- (iii) The compound thus obtained is decomposed to get the pure metal.
- (iv) Employed for purification of metals like titanium and zirconium.

$$Ti(s) + 2I_2(g) \xrightarrow{523 \text{ k}} Ti I_4(g)$$

Impure

$$TiI_4(g) \xrightarrow{1800 \text{ k}} Ti(s) \text{ (pure)+ } 2I_2(g)$$

(ii) Mond's process

(i) Nickel is purified by using CO gas. This involves the formation of nickel tetracarbonyl.

$$Ni_{(Impure)} + 4CO \xrightarrow{330K350K} [Ni(CO)_4] \xrightarrow{450K} Ni_{(pure)} + 4CO \uparrow$$

BEGINNER'S BOX-2

- 1. Copper matte consists of :-
 - (1) Copper oxide and ferrous sulphide
- (2) Copper sulphide and ferrous oxide
- (3) Copper sulphide and ferrous sulphide
- (4) Copper oxide and ferrous oxide
- 2. Product obtained after Bessemerisation is called as...because.....
 - (1) Concentrated copper; copper percentage is high (2) Copper matte; of its appearance
- - (3) Blister copper; of its appearance
- (4) Ultra pure copper; 100 percent copper
- 3. Matte is obtained after this step -
 - (1) Froth floatation
- (2) Roasting
- (3) Smelting
- (4) Refining

- 4. Copper glance istype of ore -
 - (1) Carbonate
- (2) Sulphide
- (3) Oxide
- (4) Sulphate

- **5**. High purity copper is obtained by -
 - (1) Zone refining
- (2) Poling
- (3) Electrolytic refining
- (4) Cupellation

- **6**. The function of flux during the smellting of ore is:-
 - (1) To make the ore porous

(2) To remove gangue

(3) To facilitate reduction

- (4) To facilitate oxidation
- 7. The following equation repreasents a method of purification of nickel by:-

Ni (impure) + 4CO
$$\xrightarrow{320\text{K}}$$
 Ni(CO)₄

$$\xrightarrow{420\text{K}}$$
 Ni (pure) + 4CO

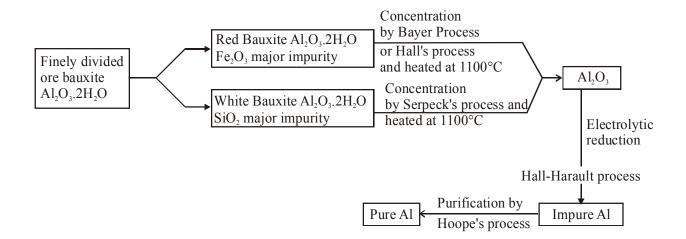
- (1) Cupellation
- (2) Mond's process
- (3) Van Arkel method
- (4) Zone refining
- 8. The slag obtained during the extraction of copper from copper pyrities is composed of :-
 - (1) Cu₂S
- (2) CuSiO₃
- (3) FeSiO₃
- (4) SiO₂
- 9. Which of the following reaction is a part of Hall's process :-

(1)
$$Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$$

(2)
$$Fe_2O_3 + 2Al \rightarrow 2Fe + Al_2O_3$$

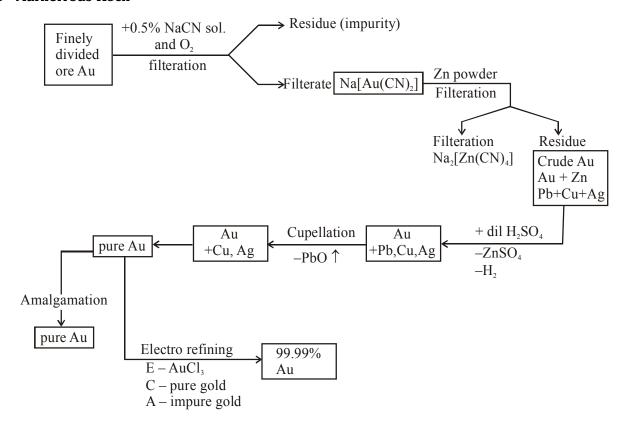
(3) AlN +
$$3H_2O \rightarrow Al(OH)_3 + NH_3$$

(4)
$$Al_2O_3.2H_2O+2Na_2CO_3 \rightarrow 2NaAlO_2+CO_2+2H_2O$$


10. Which method of purification is represented by the following equations

$$Ti + 2I_2 \xrightarrow{523K} TiI_4 \xrightarrow{1700 \text{ K}} Ti + 2I_2$$

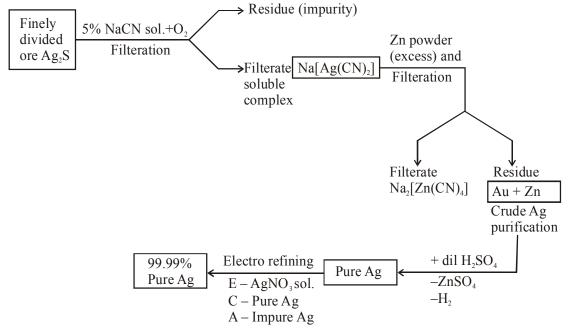
- (1) Cupellation
- (2) Poling
- (3) Van Arkel
- (4) Zone refining


Al

Ore - Bauxite Al₂O₃. 2H₂O

Au

Ore - Auriferrous Rock

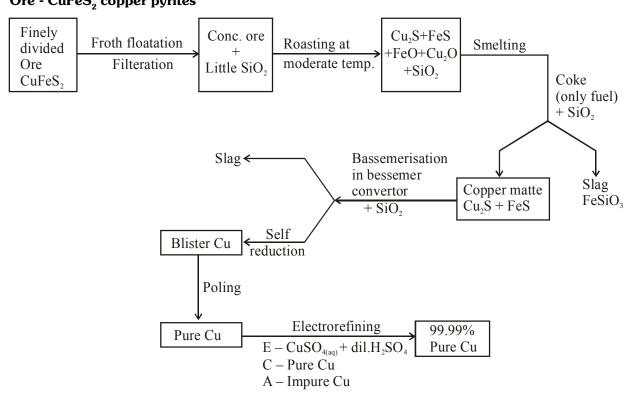


Reaction involved:

- (a) $4Au + 8NaCN + O_2 + 2H_2O \longrightarrow 4Na[Au[CN)_2] + 4NaOH$ (soluble)
- (b) $2Na[Au(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)_4] + 2Au \downarrow$ (soluble) (soluble)

Ag

Ore - Argentite Ag₂S



Reaction involved:

- (a) \Rightarrow O_2 is used to make reaction irreversible which remove Na_2S as $Na_2SO_4 + S$
- $2Na[Ag(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)_4] + Ag \downarrow$ (b)

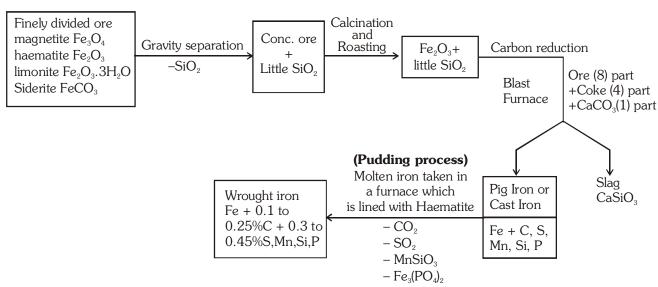
Cu

Ore - $CuFeS_2$ copper pyrites

Reaction involved:

(a) Roasting step

(b) Smelting step:


Cu₂S remain unaffected again becoz carbon reduction occurs only for oxide and not for sulphide.

FeS + Cu₂O
$$\rightarrow$$
 FeO + Cu₂S
FeO + SiO₂ \longrightarrow FeSiO₃ Slag
CaO + SiO₂ \longrightarrow CaSiO₃

(c) Bassemer convertor reaction :-

$$\begin{aligned} \text{FeS} + \text{O}_2 & \longrightarrow \text{FeO} + \text{SO}_2 \uparrow & \text{FeO} + \text{SiO}_2 & \longrightarrow \text{FeSiO}_3 \, \text{slag} \\ \text{Cu}_2 \text{S} + \text{O}_2 & \longrightarrow \text{Cu}_2 \text{O} + \text{SO}_2 \uparrow & \text{Cu}_2 \text{O} + \text{Cu}_2 \text{S} & \longrightarrow \text{Cu} + \text{SO}_2 \uparrow \\ & & \text{Blister Cu} \end{aligned}$$

Reaction involved:

(1) Roasting step:-

$$\begin{split} & \operatorname{Fe_3O_4} \stackrel{\Delta}{\longrightarrow} \operatorname{FeO} + \operatorname{Fe_2O_3} \\ & \operatorname{FeCO_3} \stackrel{\Delta}{\longrightarrow} \operatorname{FeO} + \operatorname{CO_2} \uparrow \\ & \operatorname{FeO} + \operatorname{O_2} \stackrel{\Delta}{\longrightarrow} \operatorname{Fe_2O_3} \\ & \operatorname{Fe_2O_3.3H_2O} \stackrel{\Delta}{\longrightarrow} \operatorname{Fe_2O_3} + \operatorname{3H_2O} \uparrow \end{split}$$

FeO reacts with SiO_2 to give FeSiO_3 as slag. Hence to prevent the formation of FeSiO_3 . FeO is converted into $\mathrm{Fe}_2\mathrm{O}_3$ which does not react with SiO_2 due to high L.E.

GOLDEN KEY POINTS

• Types of Iron :-

Pig iron \rightarrow Cast iron \rightarrow Steel iron \rightarrow Wrought iron

(i) Cast iron or pig iron

It is most impure form of Iron and contains the highest proportion of carbon (2.5 - 4%) along with traces of S, P, Mn and Si. Cast iron contain 2.5 to 4.3 & pig contain 2.5 to 5%.

(ii) Wrought iron (Fibrous iron) or malleable iron

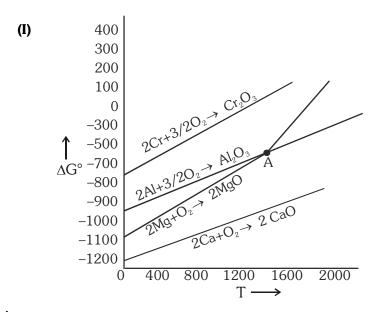
It is the purest form of iron and contains minimum amount of carbon (0.12 - 0.25%) and less than 5% of other impurities.

(iii) Steel

It is the most important form of iron and finds extensive applications. As far as carbon content (impurity) is concerned it is midway between cast iron and wrought iron, it contains 0.25- 2% carbon. Thus all the three forms of iron differ in their carbon contents, both iron and steel are obtained from cast iron.

Order of M.P. WI > Steel > CI or PI

- Useful gas NH₃ is evolved in the leaching of bauxite by serpeck's process.
- In the electrolytic reduction of Al₂O₃, cryolite (Na₃AlF₆) is added along with CaF₂ (fluorspar) to-
 - decrease m.p. of Al_2O_3
 - decrease viscocity of electrolyte (CaF_2 is used)
 - increase conductivity
- In the electrolytic reduction, graphite anode gets corroded or finished due to reaction with O₂ liberated at anode, hence it had to be changed periodically.
- In the electrolytic refining (4th step) no electrodes are used. In the Hoope's process molten pure Al is used as cathode and molten impure Al is used an anode.

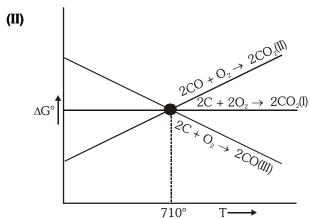

4.3 THERMODYNAMICS OF REDUCTION PROCESSES (ELLINGHAM DIAGRAM)

It is explanation of the feasibility of pyrometallurgical process by using gibbs equation $\Delta G = \Delta H - T\Delta S$

If
$$\Delta G = -ve$$
 Process is stable or Spontaneous

$$\Delta G = +$$
 ve or Less – ve then process is Unstable or non-Spontaneous

When pyrometallurgical process contains more than one type of reaction then stability of reaction can be explain by Ellingham diagram. Ellingham diagram contains plot $\overline{\Delta G}$ vs \overline{T} .


$$\Delta G = +Ve$$

$$Cr + CaO MgO Al_2O_3$$
 \longrightarrow $Cr_2O_3 + Al Mg Ca$

According to Ellingham diagram, the metal below can reduce the oxide of metal above it in the curve, as affinity of metal below for oxygen is more.

Example Al Metal can reduce Cr_2O_3 but can not reduce MgO & CaO .

At very high T after 'A' Point Al' metal can reduce MgO because Formation of MgO contains less – ve ΔG .

According to diagram at high T (710° OR above 710°C) Oxidation of C contains more – ve ΔG so at high T 'C' is good Reducing agent.

At Low T (below 710°C) Oxidation of CO contains more –ve ΔG so at Low T, CO is good Reducing agent.

BEGINNER'S BOX-3

- 1. The appropriate flux for removing FeO will be
 - (1) SiO₂
- (2) CaO

- (3) MgO
- (4) Al

2. Match the following :-

Metallurgical process Methods

- (A) Copper glance \rightarrow Cu
- (P) Leaching by NaOH followed by electrolytic reduction
- (B) Bauxite \rightarrow Al
- (Q) Froth flotation, partial roasting & self reduction.
- (C) Cerussite \rightarrow Pb
- (R) Heating in presence of dry HCl followed by electrolysis
- (D) $MgCl_2.6H_2O \rightarrow Mg$
- (S) Calcination followed by carbon reduction
- (1) A-R, B-P, C-S, D-Q

(2) A-Q, B-P, C-S, D-R

(3) A-P, B-Q, C-S, D-R

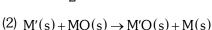
- (4) A-S, B-P, C-Q, D-R
- **3.** In the metallurgy of iron, during smelting process, CO is main reducing agent at the upper part of blast furnace, because
 - (1) It is less concentrated in upper atmosphere
 - (2) The CO₂ formed can be easily removed
 - (3) In the lower atmosphere, there is no oxide to be reduced
 - (4) The entropy change during CO/CO₂ is negative

- **4.** Favourable reducing agent for ZnO/Zn is :-
 - (1) C at high temperature

(2) CO at high temperature

(3) Cu at high temperature

- (4) Cu at low temperature
- **5.** Which of the following is true regarding recovery of copper from its low grade (lean) ores.
 - (1) Zn is advantageous economically
 - (2) Fe is advantageous economically
 - (3) Both Fe and Zn can be used and are equally advantageous
 - (4) None of them can be used because Cu is less reactive
- **6.** The slope of a line on Ellingham diagram for a process M/MO is :-

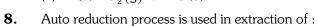

(1)
$$-\frac{\Delta G}{R}$$

$$(4) - \frac{\Delta S}{T}$$

7. The true statement is at temperature 'T'

(1)
$$M'(s) + \frac{1}{2}O_2(g) \rightarrow M'O(s)$$

 ΔS is positive


 ΔG is positive

(3)
$$M'O(s) + MO(s) \rightarrow M'O(s) + M(s)$$

 ΔG is negative

(4)
$$M'(s) + O_2(g) \to M'O(s)$$

 ΔS is negative

(1) Cu

(2) Hg

(3) Pb

(4) All of these

- **9.** Which is not the correct process-mineral matching in metallurgical extraction.
 - (A) Leaching : silver

(B) Zone refining: lead.

(C) Liquation: tin

(D) Van Arkel: Zr

- **10.** Consider the following metallurgical processes :-
 - (i) Heating impure metal with CO and distilling the resulting volatile carbonyl (boiling point 43° C) and finally decomposing at 150° C to 200° C to get the pure metal.
 - (ii) Heating the sulphide ore in air until a part is converted to oxide and then further heating in the absence of air to let the oxide react with unchanged sulphide.
 - (iii) Electrolysing the molten electrolyte containing approximately equal amounts of the metal chloride and CaCl₂ to obtain the metal.

The process used for obtaining sodium, nickel and copper are, respectively,

- (1) (i), (ii) and (iii)
- (2) (ii), (iii) and (i)
- (3) (iii), (i) and (ii)
- (4) (ii), (i) and (iii)

ANSWER KEY

BEGINNER'S BOX-1	Que.	1	2	3	4	5	6	7	8	9	10
BEGINNER 5 BOX-1	Ans.	2	3	3	1	4	4	4	4	2	1
BEGINNER'S BOX-2	Que.	1	2	3	4	5	6	7	8	9	10
DEGINNER 3 DOX-2	Ans.	3	3	3	2	3	2	2	3	4	3
			Į.								
BEGINNER'S BOX-3	Que.	1	2	3	4	5	6	7	8	9	10

(SOME IMPORTANT ALLOY)

1. Bronze - Cu (75-90 %) + Sn (10-25 %)

2. Brass - Cu (60-80 %) +Zn (20-40%)

3. Gun metal - (Cu + Zn + Sn) (87:3:10)

4. German Silver - Cu + Zn + Ni (2:1:1)

5. Nichrome - (Ni + Cr + Fe)

6. Alloys of steel

(a) Chromium steel Cr (2-4%)(b) Nickel Steel Ni (3-5%)

(c) Stainless steel Cr (12-14%) & Ni (2-4%) Cr forms oxide layer & Protects Iron From Rusting

(d) Invar (इनवार) Ni (36%)

APPENDIX

LIST OF ORES AND THEIR NAMES

TYPES OF ORES	S.N.	FORMULA OF THE ORE	NAME
Oxide Ore	1. 2. 3. 4. 5. 6. 7. 8. 9.	ZnO (Philosopher's Wool) MnO_2 SnO_2 Cu_2O Fe_2O_3 $Al_2O_3.2H_2O$ $FeO. Cr_2O_3$ Fe_3O_4 $Fe_2O_3.3H_2O$ TiO_2	Zincite Pyrolusite Cassiterite (Tin stone) Cuprite (Ruby Copper) Haematite Bauxite Chromite Magnetite Limonite Rutile
Sulphide Ore	1. 2. 3. 4. 5. 6. 7. 8. 9.	ZnS HgS PbS Ag ₂ S FeS ₂ CuFeS ₂ , CuS.FeS Cu ₂ S.Ag ₂ S Ag ₂ S.Sb ₂ S Cu ₂ S (Copper glance)	Zinc Blende (Sphalerite) Cinnabar Galena Argentite or Silver glance Iron pyrites (Fool's gold) Copper pyrites (Chalcopyrities) Copper silver glance Pyrargirite (Ruby silver) Chalcocite
Halide Ore	1. 2. 3. 4. 5.	NaCl AgCl CaF ₂ AIF ₃ .3NaF KCl.MgCl ₂ .6H ₂ O	Rock Salt Horn Silver Flourspar Cryolite Carnelite
Carbonate Ore	1. 2. 3. 4. 5. 6. 7.	MgCO ₃ CaCO ₃ MgCO ₃ .CaCO ₃ ZnCO ₃ (Smithosonite) PbCO ₃ FeCO ₃ CuCO ₃ . Cu(OH) ₂ 2CuCO ₃ .Cu(OH) ₂	Magnesite Lime stone Dolomite Calamine Cerrusite Siderite Malachite Azurite
Sulphate Ore	1. 2. 3.	CaSO ₄ ·2H ₂ O MgSO ₄ ·7H ₂ O K ₂ SO ₄ ·Al ₂ (SO ₄) ₃ ·24H ₂ O	Gypsum Epsomite Or Epsom salt Alum
Nitrate Ore	1. 2.	NaNO ₃ KNO ₃	Chile- Salt Peter Salt peter or Indian salt peter
Phosphate Ore	1.	Ca ₃ (PO ₄) ₂	Rock Phosphate

EXERCISE-I (Conceptual Questions)

1. Which of the following is not an ore of Iron:-(1) Haematite (2) Limonite aluminium is known as:-(3) Cassiterite (4) Magnetite (1) Smelting (2) Roasting 2. Aluminium is obtained from Al₂O₃ by this method (3) Calcination (1) Thermal reduction. (2) Hydro metallurgical method. (3) Electrolytic reduction. **15**. (4) Reduction by iron. hydrometallurgy:-(1) Copper 3. Zinc blende on roasting in air gives :-(3) Silver (1) Zinc carbonate (2) SO₂ and ZnO (3) ZnS and ZnSO₄ (4) CO₂ and ZnO 4. Litharge is a mineral of:-(1) Roasting (1) Magnesium (2) Lithium (2) Sublimation (3) Lead (4) Zinc (3) Electrolytic refining (4) Reduction with carbon 5. The oxide cannot be reduced by coke (2) Fe₂O, ZnO (1) Cu₂O, ZnO **17**. (3) CaO, K₂O (4) PbO, Fe₃O₄ (1) Fe 6. Chemical formula of horn silver is:-(3) Ca (1) Ag₂S (2) AgCl (4) Ag₂S. Sb₂S₃ (3) AgNO₃ 18. (1) Roasting 7. An example of halide ores is:-(3) Smelting (1) Galena (2) Bauxite (3) Cinnabar (4) Cryolite (1) Bismuth 8. Which is not a basic flux :-(3) Tin (1) Silica (2) Lime stone (3) Calcite (4) Quick lime 20. A mineral is called ore if 9. Iron pyrites ore is concentrated by:-(1) Froth floatation (2) Electrolysis (3) Roasting (4) Magnetic separation Which of the following metal is extracted by electrolytic reduction process of its halide are :-**21**. (1) Copper (2) Iron (1) Cu & Pb (3) Sodium (4) Aluminium (3) Cu & Al

11. Which of the following metal can not be extracted by smelting process:-

(1) Lead

(2) Zinc

(3) Iron

(4) Aluminium

The main reducing agent for the extraction of iron metal in a blast furnace is:-

(1) Coke

(2) Carbon

(3) Carbon dioxide

(4) Carbon monoxide

The flux used in extraction of Iron from haematite in the blast furnace is:-

(1) Silica

(2) Lime stone

(3) Phosphorus chloride

(4) Calcium phosphate

Build Up Your Understanding

The reduction of Cr₂O₃, by heating it with

(4) Aluminothermite process

Which of the following is obtained by

(2) Gold

(4) All of these

16. Aluminium is purified by :-

In Goldschmidt thermite process, reducing agent

- (2) Na
- (4) Al

Heating pyrites in air to remove sulphur is known as:-

- (2) Calcination
- (4) Fluxing

19. Liquation process is used for refining:-

- (2) Lead
- (4) All
- (1) Metal present in the mineral is costly
- (2) A metal can be extracted from it
- (3) A metal can be extracted profitably from it
- (4) A metal can not be extracted from it

Autoreduction process is used in the extraction of:-

- (2) Zn & Hg
- (4) Fe & Pb

22. In thermite process, thermite mixture is:-

- (1) Al powder + sulphide (2) Zn + oxide powder
- (3) Na + Oxide
- (4) Al powder + oxide

23. The process of converting hydrated Alumina into anhydrous Alumina is called:-

- (1) Roasting
- (2) Calcination
- (3) Smelting
- (4) Dressing

24. The metallurgical process in which a metal is obtained in a fused state is called:-

- (1) Smelting
- (2) Roasting
- (3) Calcination
- (4) Froth floatation

- In the extraction of copper, metal is formed in the Bessemer converter due to reaction:-
 - (1) $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$
 - (2) $Cu_2S \rightarrow 2Cu + S$
 - (3) Fe + Cu₂O \rightarrow 2Cu + FeO
 - $(4) 2Cu_2O \rightarrow 4Cu + O_2$
- In the electrolytic refining of copper, Ag and Au **26**. are found:-
 - (1) On cathode
- (2) On anode
- (3) In the anodic mud
- (4) In the cathodic mud
- **27**. Consider :-
 - (a) Copper blende = Cu₂O
 - (b) Chromite = Magnetic separation.
 - (c) Bauxite = $Al_2O_3.2H_2O$
 - (d) Liquation = Liquid metals e.g. Hg Which is/are not correctly matched :-
 - (1) (a) only
- (2) (b) only
- (3) (d) only
- (4) (a) & (d) both
- **28**. Silver can be separated from lead by :-
 - (1) Distillation
- (2) Amalgamation
- (3) Filtration
- (4) Cupellation
- In blast furnace this is acting as reducing agent at lower part :-
 - (1) CO

(3) C

- (2) H₂ (4) None
- Which of the following metals can not be extracted **30**. by carbon reduction process :-
 - (1) Pb
- (3) Sn
- (4) Zn
- **31**. The maximum temperature obtained in the...region of the blast furnace used in extraction of iron:-
 - (1) Reduction
- (2) Combustion
- (3) Fusion
- (4) Slag formation
- **32**. The concentration of chromite (FeO. Cr₂O₃) is done
 - (1) Leaching process
- (2) Magnetic separation
- (3) Froth -flotation
- (4) Calcination
- **33**. Which of the following process involves smelting
 - (1) 2 PbS + $3O_2 \rightarrow 2$ PbO + 2SO $_2$ ↑
 - (2) Al_2O_3 . $2H_2O \rightarrow Al_2O_3 + 2H_2O$
 - (3) $Fe_2O_3 + CO \rightarrow 2Fe + 2CO_2$
 - (4) $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr + Heat$
- **34**. Out of the following, which ores are calcinated
- during extraction :-(b) Malachite (c) Bauxite (a) Copper pyrites
 - Correct answer is :-(1) a, b, c
- (2) b, c
- (3) Only a
- (4) All

- **35**. Which of the following match are incorrect :-
 - (a) Goldschmidt aluminothermite process Cr₂O₃
 - (b) Mac Arthur cyanide process Fe
 - (c) Mond process Ni
 - (d) Van Arkel process Au
 - (1) a, c
- (2) c, d
- (3) b, d
- (4) a, b
- **36**. Electro metallurgical process (electrolysis of fused salt) is employed to extract :-
 - (1) Lead
- (2) Silver
- (3) Sodium
- (4) Copper
- In the extraction of copper from pyrites, iron is removed as:-
 - (1) $FeSO_4$
- (2) FeSiO₃
- $(3) \text{ Fe}_3 O_4$
- (4) Fe₂O₃
- **38**. Which one of the following metals can not be extracted by using Al as a reducing agent :-
 - (1) Na from Na₂O
- (2) Cr from Cr₂O₃
- (3) Mn from MnO₂
- (4) V from $V_2\bar{O}_5$
- **39**. In the electrolytic refining for aluminium extraction the electrolyte used is:-
 - (1) Fluorides of Al, Na and Ca
 - (2) Al(OH)₃ in NaOH solution
 - (3) An aqueous solution of $Al_2(SO_4)_3$
 - (4) Molten Al_2O_3
- Which one is mismatched :-**40**.
 - (1) Poling refining of copper
 - (2) Cupellation refining of silver
 - (3) Smelting An oxidation process
 - (4) Roasting An oxidation process
- 41. Which metal can be purified by distillation :-
 - (1) Cu
- (2) Ag
- (3) Fe
- (4) Hg
- **42**. Carbon cannot be used in the reduction of Al₂O₃ because :-
 - (1) it is an expensive
 - (2) the enthalpy of formation of CO₂ is more than that of Al_2O_3 (3) pure carbon is not easily available

 - (4) the enthalpy of formation of Al₂O₃ is too high
- **43**. Match list I with list II and select the correct answer using the codes given below the lists

List I

List II

- A. Van Arkel method I. Purification of titanium B. Solvay process II. Manufacture of Na₂CO₃
- C. Cupellation
- III. Purification of copper IV. Refining of silver

D

III

IV

III

D. Poling Codes:

III

(4)

	Α	В	
(1)	I	II	

I

- (2)I II IV (3)II
- IV

C

- III Ι
- II
- IV

- Anode mud obtained after electrolytic refining of copper contains :-
 - (1) Ag
- (2) Au

- (3) Pt
- (4) All
- **45.** Matte :-
 - $(1) Cu_{o}S + FeS$
 - (2) Cu₂O + FeS
 - $(3) Cu_{o}O + Cu_{o}S$
 - (4) FeS + SiO₂
- **46.** Which of the following reaction is not involved in themite process:-
 - (1) $3Mn_3O_4 + 8Al \longrightarrow 9Mn + 4Al_2O_3$
 - (2) $Cr_2O_3 + 2AI \longrightarrow Al_2O_3 + 2Cr$
 - (3) $2Fe + Al_2O_3 \longrightarrow 2Al + Fe_2O_3$ (4) $B_2O_3 + 2Al \longrightarrow 2B + Al_2O_3$
- **47.** Alumino thermite process is used for the extraction of metals, whose oxides are :-
 - (1) Strongly acidic
 - (2) Not easily reduced by carbon
 - (3) Not easily reduced by hydrogen
 - (4) Stongly basic
- **48**. Match the following:-

I

- (A) Calcination
- a. $2Cu_2S + 3O_2 \rightarrow$
 - $2Cu_{o}O + 2SO_{o}$
- (B) Roasting
- b. Fe_2O_3 . $nH_2O \rightarrow$

$$Fe_2O_3 + nH_2O$$

- (C) Flux
- c. $Cr_2O_3 + 2Al \rightarrow$ $Al_2O_3 + 2Cr$
- (D) Thermite
- d. $SiO_2 + FeO \rightarrow FeSiO_3$

	Α	В	C]
(1)	a	b	С	(
(2)	b	a	d	(
(3)	d	a	b	(

Main source of lead is PbS. It is converted to Pb

$$A: PbS \xrightarrow{\quad air\quad \\ \quad \Delta} PbO + SO_2 \xrightarrow{\quad C\quad \quad \Delta} Pb + CO_2$$

B:PbS
$$\xrightarrow{\text{insufficient air}}$$
 PbO + PbS $\xrightarrow{\Delta}$ Pb + SO₂

Self reduction process is:

(1) A

- (3) both
- (4) none

- When haematite ore is burnt in air with coke along **50**. with lime at 200°C, the process not only produces steel but also produces an important compound (A), which is useful in making building materials. The compound (A) is
 - (1) SiO₂
- (2) CaSiO,
- (3) FeO
- (4) Fe₂O₃
- **51**. Match List-I with List-II and select the correct answer using the codes given below the lists.

List-I (Metals)

List-II

(Process/methods involved in extraction process)

(a) Au

1. Self reduction

(b) Al

2. Liquation

(c) Pb

3. Electrolysis

(d) Sn

- 4. Bayer's process
- (d) (a) (b) (c) (1)3 1 2 4 2 (2)3 1 (3)1 2 4 3 (4)3 2 4 1
- **52**. Main function of the collectors in metallurgy is:
 - (1) Stick to the ore and then take it to rise upto the top
 - (2) Convert the insoluble ore into soluble part
 - (3) Make the ore hydrophobic
 - (4) None
- **53**. Reducing agent of haematite in blast-furnace is :-
 - (1) Coke in furnace
 - (2) Coke in upper part and CO in lower part of
 - (3) CO in most parts of the furnace
 - (4) CO in the furnace.
- **54.** PbS $\xrightarrow{\text{air}}$ X, X + PbS \longrightarrow Pb + SO₂. 'X'

may be :-

- (1) PbO
- (2) PbO₂
- (3) PbO and PbSO₄
- (4) PbO₂ and PbO
- Which one of the following statements is **incorrect**?
 - (1) Tin is extracted by carbon reduction (smelting)
 - (2) Aluminium is extracted by Hall's process which involves carbon reduction.
 - (3) Extraction of lead does not involve bessemerisation.
 - (4) Silver is extracted by cyanide process.

- **56.** Extraction of zinc from zinc blende is achieved by:
 - (1) electrolytic reduction
 - (2) roasting followed by reduction with carbon
 - (3) roasting followed by reduction with another metal
 - (4) roasting followed by self-reduction

57. Column - I

Column - II

- (1) Metal which occur in the native state in nature is
- (P) Hg
- (2) The oxides of metal that (Q) Ti can be commercially reduced by Aluminorthermite reduction process is
- (3) van Arkel method is used for preparing ultrapure metal of
- (R) Cr

(S) Ag

- (4) Auto reduction process is employed for the sulphide ore of
- (1) A-S, B-R, C-Q, D-P
- (2) A-R, B-S, C-Q, D-P
- (3) A-P, B-S, C-Q, D-P
- (4) A-Q, B-R, C-S, D-P
- **58.** Match the following
 - 1. Zincite
- P Sulphide ore
- 2. Malachite
- Q halide ore
- 3. Horn silver
- R Oxide ore
- 4. Iron pyrities
- S Carbonate ore
- (1) 1 R; 2 P; 3 Q; 4 S
- (2) 1 R; 2 S; 3 Q; 4 P
- (3) 1 S; 2 R; 3 P; 4 Q
- (4) 1 Q; 2 S; 3 P; 4 R

- **59.** In magnetic seperation method which one is true
 - (1) either ore is being attracted by magnetic field
 - (2) either gangue is being attracted by magnetic field
 - (3) Both
 - (4) None
- 60. In froth floatation method depresants are used for-
 - (1) to enhance non wettability of mineral partiels
 - (2) to made suspension of ore with water
 - (3) to take forth upside
 - (4) to seperate two sulphide ore
- **61.** Which reaction shows formation of blistered copper.

(1) 2FeS +
$$3O_2 \longrightarrow 2FeO + 2SO_2 \uparrow$$

(2)
$$2Cu_2S+3O_2 \longrightarrow 2Cu_2O + 2SO_2\uparrow$$

(3)
$$2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2\uparrow$$

(4)
$$Cu_2O + C \longrightarrow 2Cu + CO\uparrow$$

62. Which reaction is involved in extraction of Ag by cyanide proces

(1) AgBr + Na₂S₂O₃
$$\longrightarrow$$
 Na₃ [Ag(S₂O₃)₂]

(2) AgCl + NH₄OH
$$\longrightarrow$$
 [Ag(NH₃)₉] Cl

(3)
$$Ag_2S + NaCN \longrightarrow Na[Ag(CN)_2]$$

(4) None

EXERCISE-I (Conceptual Questions)

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	3	2	3	3	2	4	1	1	3	4	4	2	4	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	4	1	4	3	1	4	2	1	1	3	4	4	3	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	2	2	3	2	3	3	2	1	1	3	4	4	1	4	1
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	2	2	2	2	2	1	3	3	2	2	1	2	3	4
Que.	61	62													

Ans. | 164

3

3

EXERCISE-II (Previous Year Questions)

AIPMT 2007

- 1. Sulphide ores of metals are usually concentrated by froth floatation process. Which one of the following sulphide ores offers an exception and is concentrated by chemical leaching?
 - (1) Sphalerite
- (2) Argentite
- (3) Galena
- (4) Copper pyrites

AIIMS 2010

- **2.** According to percentage weight arrange the following in descending order in the earth crust
 - (1) O₂, Ca, Mg, S
- (2) O₂, S, Mg, Ca
- (3) S, Ca, Mg, O₂
- (4) Ca, O₂, Mg, S

AIPMT-Pre 2011

- **3.** Which of the following elements is present as the impurity to the maximum extent in the pig iron?
 - (1) Manganese
- (2) Carbon
- (3) Silicon
- (4) Phosphorus
- **4.** Which of the following pairs of metals is purified by Van Arkel method?
 - (1) Ga and In
- (2) Zr and Ti
- (3) Ag and Au
- (4) Ni and Fe

AIPMT-Mains 2011

The following reactions take place in the blast furnace in the preparation of impure iron. Identify the reaction pertaining to the formation of the slag:-

(1)
$$2C(s) + O_2(g) \rightarrow 2CO(g)$$

(2)
$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(\ell) + 3CO_2(g)$$

(3)
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

(4)
$$CaO(s) + SiO_2(s) \rightarrow CaSiO_3(s)$$

AIPMT-Pre 2012

6. Aluminium is extracted from alumina (Al_2O_3) by electrolysis of a molten mixture of:

$$(1) Al2O3 + Na3AlF6 + CaF2$$

(2)
$$Al_2O_3 + KF + Na_3AlF_6$$

(3)
$$Al_2O_3 + HF + NaAlF_4$$

(4)
$$Al_2O_3 + CaF_2 + NaAlF_4$$

AIPMT/NEET & AIIMS (2006-2018)

- **7.** In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous oxide with:
 - (1) Iron sulphide (FeS)
 - (2) Carbon monoxide (CO)
 - (3) Copper (I) sulphide (Cu₂S)
 - (4) Sulphur dioxide (SO₂)
- **8.** Identify the alloy containing a non-metal as a constituent in it.
 - (1) Bell metal
- (2) Bronze
- (3) Invar
- (4) Steel
- **9.** Which one of the following is a mineral of iron?
 - (1) Pyrolusite
 - (2) Magnetite
 - (3) Malachite
 - (4) Cassiterite

AIIMS 2014

- **10.** Which of the following is separated as slag during extraction of Fe in blast furnace :-
 - (1) SiO₂
- (2) Al₂O₃
- (3) CaO
- (4) MgO

Re-AIPMT 2015

- **11.** In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous oxide with :-
 - (1) copper(I) sulphide
 - (2) sulphur dioxide
 - (3) iron(II) sulphide
 - (4) carbon monoxide

AIIMS 2015

- **12**. In extraction of metal by bessemerisation, Cu₂S is converted into :
 - (1) Cu₂O
- (2) CuO
- (3) Cu
- (4) CuFeO₂

NEET-I 2016

13. Match items of Column I with the items of Column II and assign the correct code :

	Column-I		Column-II
(a)	Cyanide process	(i)	Ultrapure Ge
(b)	Froth floatation process	(ii)	Dressing of ZnS
(c)	Electrolytic reduction	(iii)	Extraction of Al
(d)	Zone refining	(iv)	Extraction of Au
		(v)	Purification of Ni

Code :

(a)	
เสเ	

(b) (d

(c) (d)

(1) (iv) (2) (ii)

(ii) (iii)

(iii)

(i) (v)

(3) (i)

(111) (ii)

(iii) (iv)

(4) (iii)

(iv)

(v) (i)

(i)

NEET-II 2016

- **14.** Zinc can be coated on iron to produce galvanized iron but the reverse is not possible. It is because:
 - (1) zinc has lower negative electrode potential than iron
 - (2) zinc has higher negative electrode potential than iron
 - (3) zinc is lighter than iron
 - (4) zinc has lower melting point than iron

NEET(UG) 2017

- **15.** Extraction of gold and silver involes leaching with CN ion. Silver is later recovered by :-
 - (1) distillation
 - (2) zone refining
 - (3) displacement with Zn
 - (4) liquation

AIIMS 2017

- **16.** Which of the following statement is correct about blast furnace.
 - (1) CaCO₃ is used to produce O₂
 - (2) Fe₂O₃ convert into Fe₃O₄
 - (3) Wrought iron can directly be obtain from blast furnace
 - (4) Wrought iron is 100% pure
- **17.** In the fusion of chromite ore with sodium carbonate in excess of air which of the following is not formed.
 - (1) Fe₂O₃

(2) Na₂CrO₄

(3) CO₂

(4) Na₂Cr₂O₇

NEET(UG) 2018

- **18.** Considering Ellingham diagram, which of the following metals can be used to reduce alumina?
 - (1) Fe

(2) Zn

(3) Mg

(4) Cu

AIIMS 2018

- **19.** In the context of the Hall-Heroult process for the extraction of Al, which of the following statement is correct?
 - (1) the ratio of alumina & cryolite is nearly 1:9
 - (2) pure Al is obtained at anode
 - (3) melting point of alumina decreases upto 300 K
 - (4) only carbon monooxide gas is produced at graphite electrode
- **20.** For smelting of Cu correct statements is :-
 - (1) Cu is reduced
 - (2) FeS converted in FeO
 - (3) Fe in reduced
 - (4) Cu₂S converted in Cu₂O

EXERCISE-II (Previous Year Questions)

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	1	2	2	4	1	3	4	2	1	1	3	1	2	3
Que.	16	17	18	19	20										
Ans.	2	4	3	1	2										

EXERCISE-III (Analytical Questions)

- In the extraction of silver, Ag_oS is dissolved in : 1.
 - (3) KCN
- (2) HNO₃ $(4) H_{2}SO_{4}$
- 2. The method of zone refining of metals is based on the principle of :-
 - (1) Greater mobility of the pure metal than that of the impurity
 - (2) Higher melting point of the impurity than that of the pure metal
 - (3) Greater noble character of the solid metal than that of the impurity
 - (4) Greater solubility of the impurity in the molten state than in the solid
- 3. Which one of the following ores is best concentrated by froth-flotation method :
 - (1) Galena
- (2) Cassiterite
- (3) Magnetite
- (4) Malachite
- 4. Which of the following sulphides when heated strongly in air gives the corresponding metal?
 - (1) Cu₂S
- (2) CuS
- (3) FeS
- (4) HgS
- **5**. Stainless steel does not rust because :
 - (1) Chromium and nickel combine with iron
 - (2) Chromium forms an oxide layer and protects iron from rusting
 - (3) Nickel present in it, does not rust
 - (4) Iron forms a hard chemical compound with chromium present in it
- 6. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to -
 - (1) Minimise the heat loss due to radiation
 - (2) Protect aluminium produced from oxygen
 - (3) dissolve bauxite and render it conductor of electricity
 - (4) Increases the melting point of bauxite
- Purification of Ge like semiconductor is done by 7.
 - (1) Cyanide process
- (2) Van arkel process
- (3) Alumino thermite
- (4) Zone refining
- 8. Which of the following contains both Cu & Fe:-
 - (1) Chalcocite
- (2) Chalcopyrites
- (3) Malachite
- (4) Epsum

- **Check Your Understanding**
- 9. The metal that cannot be obtained by electrolysis of an aqueous solution of its salts is:
 - (1) Cu
- (2) Cr
- (4) Ca
- 10. Which series of reactions correctly represents chemical relations related to iron and its compound?
 - (1) Fe $\xrightarrow{\text{Cl}_2, \text{ heat}}$ FeCl₃ $\xrightarrow{\text{heat, air}}$
 - (2) Fe $\xrightarrow{O_2, \text{ heat}}$ Fe₃O₄ $\xrightarrow{CO, 600^{\circ}C}$ FeO $\xrightarrow{\text{CO,700}^{\circ}\text{C}}$ Fe
 - (3) Fe $\xrightarrow{\text{dil H}_2SO_4}$ FeSO₄ $\xrightarrow{\text{H}_2SO_4, O_2}$ $Fe_2(SO_4)_2 \xrightarrow{Heat} Fe$
 - (4) Fe $\xrightarrow{O_2, \text{ heat}}$ FeO $\xrightarrow{\text{dil H}_2SO_4}$ $FeSO_4 \xrightarrow{Heat} Fe$
- 11. In which of the following extration no reducing agent is required?
 - (1) Iron from haematite
 - (2) Aluminium from Cinnabar
 - (3) Magnesium from carnallite
 - (4) Zinc from zinc blende
- **12**. Of the following reduction processes, the correct process(es) is/are :-

$$(1) B2O3 + Al \xrightarrow{\Delta} B$$

(2)
$$\operatorname{Cr_2O_3} + 2\operatorname{Al} \xrightarrow{\Delta} \operatorname{Cr}$$

- (3) $TiCl_4 + Mg \xrightarrow{\Delta} Ti$
- (4) All the above
- 13. Select the correct statement :-
 - (1) Dolomite contains both magnesium and calcium
 - (2) Extraction of lead from galena involves roasting in limited supply of air at moderate temperature.
 - (3) Extraction of zinc from zinc blende involves roasting followed by reduction with carbon.
 - (4) All the above
- 14. Which of the following is/are correctly matched?
 - (1) Copper Bessemer converter
 - (2) Iron Blast furnance
 - (3) Chromium Aluminothermic process
 - (4) All the above

EX	ERC	ISE-I	II (An	alytic	al Que	stion	s)						ANSV	VER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Ans.	3	4	1	4	2	3	4	2	4	2	3	4	4	4	

EXERCISE-IV (Assertion & Reason)

Target AIIM

Directions for Assertion & Reason questions

These questions consist of two statements each, printed as Assertion and Reason. While answering these Questions you are required to choose any one of the following four responses.

- (A) If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.
- (B) If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.
- If Assertion is True but the Reason is False.
- If both Assertion & Reason are false. (D)
- 1. Assertion: All the ores are mineral

Reason: Ores contains metals in combined state

- (1) A
- (2) B
- (3) C
- (4) D
- 2. Assertion: Ores are generally converted into oxides, prior to reduction

Reason: Metal oxides can be easily reduced

- (1) A
- (2) B
- (3) C
- (4) D
- 3. **Assertion**: In the extraction of Ag the complex Na [Ag(CN)₂] is reacted with Zn

Reason: Zn is transition metal.

- (1) A
- (2) B
- (3) C
- (4) D
- 4. **Assertion:** In froth floatation process sodium ethyl xanthate is used as floating agent

Reason: Sulphide ores are water soluble

- (1) A
- (2) B
- (3) C
- (4) D
- 5. Assertion: Cryolite is used in electrolytic extraction of Al from alumina.

Reason: It dissolves alumina, decreases its mpt.

- (1) A
- (2) B
- (3) C
- (4) D
- 6. **Assertion**: CuFeS₂ is concentrated by froath floatation method

Reason: CuFeS₂ is main ore of copper

- (1) A
- (2) B
- (3) C
- (4) D
- 7. **Assertion:** Wolframite impurities are separated from cassiterite by electromagnetic separation.

Reason: Cassiterite being magnetic is attached by the magnet.

- (1) A
- (2) B
- (3) C
- (4) D

8. **Assertion:** Lead, tin and bismuth are purified by liquation method.

> **Reason:** Lead, tin and bismuth have low m.p. as compared to impurities.

- (1) A
- (2) B
- (3) C
- (4) D
- 9. **Assertion:** In the smelting of copper ore coke is added in the blast furnace.

Reason: Coke reduces. CuO into Cu.

- (1) A
- (2) B
- (3) C
- (4) D
- **10**. **Assertion:** Extraction of iron metal from iron oxide ore is carried out by heating with coke.

Reason: The reaction

 $Fe_2O_3(s) \longrightarrow Fe(s) + 3/2O_2(g)$ is a spontaneous process.

- (1) A
- (2) B
- (3) C
- (4) D
- **11.** Assertion :- $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr$, this reaction is not possible at room temperature.

Reason :- ΔG value for this reaction is negative.

- (1) A
- (2) B
- (3) C
- (4) D
- **12**. Assertion: Zone refining is based on the fact that impurities are more soluble in molten state than in solid in the presence of oxygen.

Reason: This method is used to prepare pure metal oxides.

- (1) A
- (2) B
- (3) C
- (4) D
- **13**. Assertion: - According to ellingam diagram FeO can be easily reduced than Cu₂O by carbon.

Reason :- ΔG° of FeO is -300 kJ where as that of Cu₂O is -450 kJ.

- (1) A
- (2) B
- (3) C
- (4) D

EXERCISE-IV (Assertion & Reason)

ANSWER KEY

Ans.	2	1	3	3	1	2	3	1	3	3	2	4	4	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	

Pre-Medical: Chemistry	ALLEN
IMPORTAN	IT NOTES