ORGANIC CHEMISTRY

DPP No. 11

Total Marks: 23

Max. Time: 23 min.

Topic: Acid and Basic Strength

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.6

(3 marks, 3 min.) [18, 18]

Fill in the Blanks ('-1' negative marking) Q.7

(3 marks, 3 min.) [3, 3]

True or False (no negative marking) Q.8

(2 marks, 2 min.) [2, 2]

Decreasing order of their basic strength follows for :

(A)
$$V > I > III > IV > II$$

(C)
$$I > V > IV > III > II$$

2. Increasing order of their basic strength follows for :

Aniline I p-nitroaniline

p-toluidine

III

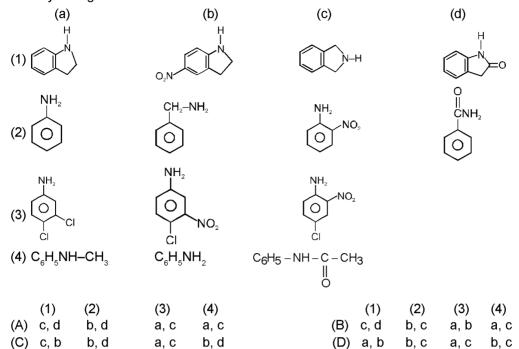
3. Which nitrogen in LSD (Lysergic acid diethylamide) is most basic?

$$\begin{array}{c|c} H - \stackrel{(1)}{N} & \stackrel{(2)}{\bigcap} & \stackrel{(3)}{\bigcap} & \stackrel{(3)$$

$$(C)$$
 3

(D) all are equally basic

4. Which of the following is incorrect order for the property mentioned against each groups

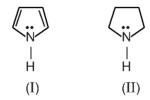

[Acidic strength]

[Acidic strength]

[Basic strength]

order of (SIR) steric inhibition of resonance to lonepair of electrons of nitrogen atom

5. Identify strongest & weakest base in each.


- 6. Which is incorrect statement
 - (A) Imidazole N is more basic than pyridine because conjugate acid of imidazole have equal distribution of charge between both nitrogen.

(B) H = N = N = N is stronger acid than H_2O .

- (C) A solution of imidozole in water is basic than pure water.
- (D) CH₃NH₂ is more basic than imidazole.
- 7. Explain why is more basic than (II)

True/False

8. (a) Pyrrolidine (II) is more basic than pyrrole (I).

- (b) C–N bond length in N is more than C–N bond length in N.
- (c) 2, 4, 6 trinitro N, N-dimemethylaniline is more basic than 2, 4, 6 trinitroaniline.

Answer Key

DPP No. #11

(B)

t-Butyl group hinders protonated pyridine for hydration.

- 1. (A)
- 2. (A)

3.

- 4.

5.

(A)

(B)

6.

8.

(D)

(a) True

- 7. (b) True
- (c) True

Hints & Solutions

DPP No. #11

- 7. t-Butyl group hinders protonated pyridine for hydration.
- 8. (a) In (I) Ione pair of N is delocalised but not in (II). After protonation of (I) positive charge cannot participate in resonance (follow octet rule)
 - (b) This is due to steric inhibition of resonance in former which does not appear in the later.
 - (c) In the former steric inibition or resonance causes the availability of ℓp on N whereas in the later due to H-bonding of NH₂ with NO₂ groups make NH₂ planar with benzene ring , so easy delocalisation of electron pair of N in benzene ring.