Session 4

Solutions of Linear Simultaneous Equations Using Matrix Method

Solutions of Linear Simultaneous Equations Using Matrix Method

Let us consider a system of n linear equations in n unknowns say $x_1, x_2, x_3, ..., x_n$ given as below

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + \dots + a_{1n} x_n = b_1$$

$$a_{21} x_1 + a_{22} x_2 + a_{23} x_3 + \dots + a_{2n} x_n = b_2$$

$$a_{31} x_1 + a_{32} x_2 + a_{33} x_3 + \dots + a_{3n} x_n = b_3$$

$$\dots \qquad \dots \qquad \dots \qquad \dots$$

$$\dots \qquad \dots \qquad \dots \qquad \dots$$

$$a_{n1} x_1 + a_{n2} x_2 + a_{n3} x_3 + \dots + a_{nn} x_n = b_n$$

$$\dots \qquad \dots \qquad \dots$$

If $b_1 = b_2 = b_3 = \dots = b_n = 0$, then the system of Eq.(i) is called a system of homogeneous linear equations and if at least one of $b_1, b_2, b_3, \dots, b_n$ is non-zero, then it is called a system of non-homogeneous linear equation. We write the above system of Eq. (i) in the matrix form as

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \dots \\ \dots \\ b_n \end{bmatrix}$$

$$\Rightarrow \qquad AX = B \qquad ...(ii)$$
where
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & ... & a_{1n} \\ a_{21} & a_{22} & a_{23} & ... & a_{2n} \\ a_{31} & a_{32} & a_{33} & ... & a_{3n} \\ ... & ... & ... & ... & ... \\ ... & ... & ... & ... & ... \end{bmatrix},$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix} \text{ and } B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \dots \\ b_n \end{bmatrix}$$

Pre-multiplying Eq. (ii) by A^{-1} , we get $A^{-1}(AX) = A^{-1}B \implies (A^{-1}A)X = A^{-1}B$ $\Rightarrow IX = A^{-1}B$ $\Rightarrow X = A^{-1}B = \frac{(\text{adj } A)B}{|A|}$

Types of Equations

- (1) When system of equations is non-homogeneous
 - (i) If $|A| \neq 0$, then the system of equations is consistent and has a unique solution given by $X = A^{-1}B$.
 - (ii) If |A| = 0 and $(adjA) \cdot B \neq 0$, then the system of equations is inconsistent and has no solution.
 - (iii) If |A| = 0 and $(adjA) \cdot B = O$, then the system of equations is consistent and has an infinite number of solutions.
- (2) When system of equations is homogeneous
 - (i) If $|A| \neq 0$, then the system of equations has only trivial solution and it has one solution.
 - (ii) If |A| = 0, then the system of equations has non-trivial solution and it has infinite solutions.
 - (iii) If number of equations < number of unknowns, then it has non-trivial solution.

Note

Non-homogeneous linear equations can also be solved by Cramer's rule, this method has been discussed in the chapter on determinants.

Example 45. Solve the system of equations x + 2y + 3z = 1, 2x + 3y + 2z = 2 and 3x + 3y + 4z = 1 with the help of matrix inversion.

Sol. We have,

$$x + 2y + 3z = 1$$
, $2x + 3y + 2z = 2$ and $3x + 3y + 4z = 1$

The given system of equations in the matrix form are written as below.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$AX = B$$

$$X = A^{-1}B \qquad ...(i)$$
where
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}, X = \begin{bmatrix} 1 & 3 \\ 2 & 3 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}, X = \begin{bmatrix} 1 & 3 \\ 3 & 4 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}, X = \begin{bmatrix} 1 & 3 \\ 3 & 4 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}, X = \begin{bmatrix} 1 & 3 \\ 3 & 4 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}, X = \begin{bmatrix} 1 & 3 \\ 3 & 4 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}, X = \begin{bmatrix} 1 & 3 \\ 3 & 4 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 2 & 3 & 4 \end{bmatrix}, X = \begin{bmatrix} 1 & 3 & 3 \\ 4 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 2 & 3 & 4 \end{bmatrix}, X = \begin{bmatrix} 1 & 3 & 3 \\ 4 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 3 & 4 & 3 \end{bmatrix}, X = \begin{bmatrix} 1 & 3 & 3 \\ 4 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 3 & 4 & 3 \end{bmatrix}, X = \begin{bmatrix} 1 & 3 & 3 \\ 4 & 3 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 3 & 4 & 3 \end{bmatrix}, X = \begin{bmatrix} 1 & 3 & 3 \\ 4 & 3 & 3 \end{bmatrix}$$

 \therefore A^{-1} exists and has unique solution.

Let *C* be the matrix of cofactors of elements in |A|. Now, cofactors along $R_1 = 6, -2, -3$

cofactors along $R_2 = 1, -5, 3$

and cofactors along $R_3 = -5, 4, -1$

$$C = \begin{bmatrix} 6 & -2 & -3 \\ 1 & -5 & 3 \\ -5 & 4 & -1 \end{bmatrix}$$

$$\therefore$$
 adj $A = C^T$

$$\Rightarrow \qquad \text{adj } A = \begin{bmatrix} 6 & -2 & -3 \\ 1 & -5 & 3 \\ -5 & 4 & -1 \end{bmatrix}^T = \begin{bmatrix} 6 & 1 & -5 \\ -2 & -5 & 4 \\ -3 & 3 & -1 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{\text{adj } A}{|A|} = -\frac{1}{7} \begin{bmatrix} 6 & 1 & -5 \\ -2 & -5 & 4 \\ -3 & 3 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 6 & 1 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{6}{7} & -\frac{1}{7} & \frac{5}{7} \\ \frac{2}{7} & \frac{5}{7} & -\frac{4}{7} \\ \frac{3}{7} & -\frac{3}{7} & \frac{1}{7} \end{bmatrix}$$

From Eq. (i), $X = A^{-1}B$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -\frac{6}{7} & -\frac{1}{7} & \frac{5}{7} \\ \frac{2}{7} & \frac{5}{7} & -\frac{4}{7} \\ \frac{3}{7} & -\frac{3}{7} & \frac{1}{7} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{3}{7} \\ \frac{8}{7} \\ -\frac{2}{7} \end{bmatrix}$$

Hence, $x = -\frac{3}{7}$, $y = \frac{8}{7}$ and $z = -\frac{2}{7}$ is the required solution.

Example 46. Solve the system of equations x + y + z = 6, x + 2y + 3z = 14 and x + 4y + 7z = 30 with the help of matrix method.

Sol. We have, x + y + z = 6,

$$x + 2y + 3z = 14$$

and

$$x + 4y + 7z = 30$$

The given system of equations in the matrix form are written as below:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 14 \\ 30 \end{bmatrix}$$

$$AX = B \qquad ...(i)$$
where, $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 \\ 14 \\ 30 \end{bmatrix}$

|A| = 1(14 - 12) - 1(7 - 3) + 1(4 - 2) = 2 - 4 + 2 = 0

 $\mathrel{\ddots}$ The equation either has no solution or an infinite number of solutions. To decide about this, we proceed to find

(adj A) B.

Let C be the matrix of cofactors of elements in |A|.

Now, cofactors along $R_1 = 2, -4, 2$

cofactors along $R_2 = -3, 6, -3$

and cofactors along $R_3 = 1, -2, 1$

$$C = \begin{bmatrix} 2 & -4 & 2 \\ -3 & 6 & -3 \\ 1 & -2 & 1 \end{bmatrix}$$

$$\Rightarrow \qquad \text{adj} = C^T = \begin{bmatrix} 2 & -3 & 1 \\ -4 & 6 & -2 \\ 2 & -3 & 1 \end{bmatrix},$$

then

$$(\operatorname{adj} A) B = \begin{bmatrix} 2 & -3 & 1 \\ -4 & 6 & -2 \\ 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 14 \\ 30 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = O$$

Hence, both conditions |A| = 0 and (adj A) B = O are satisfied, then the system of equations is consistent and has an infinite number of solutions.

Proceed as follows:

$$[A:B] = \begin{bmatrix} 1 & 1 & 1 & \vdots & 6 \\ 1 & 2 & 3 & \vdots & 14 \\ 1 & 4 & 7 & \vdots & 30 \end{bmatrix}$$

Applying $R_2 \to R_2 - R_1$ and $R_3 \to R_3 - R_1$, then

$$[A:B] = \begin{bmatrix} 1 & 1 & 1 & \vdots & 6 \\ 0 & 1 & 2 & \vdots & 8 \\ 0 & 2 & 4 & \vdots & 16 \end{bmatrix}$$

Applying $R_3 \rightarrow R_3 - 2R_2$, then

$$[A:B] = \begin{bmatrix} 1 & 1 & 1 & \vdots & 6 \\ 0 & 1 & 2 & \vdots & 8 \\ 0 & 0 & 0 & \vdots & 0 \end{bmatrix}$$

Then, Eq. (i) reduces to

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 8 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x+y+z \\ y+2z \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 8 \\ 0 \end{bmatrix}$$

On comparing x + y + z = 6 and y + 2z = 8

Taking $z = k \in R$, then y = 8 - 2k and x = k - 2.

Since, k is arbitrary, hence the number of solutions is infinite.

Example 47. Solve the system of equations

$$x + 3y - 2z = 0$$
, $2x - y + 4z = 0$ and $x - 11y + 14z = 0$.

Sol. We have, x + 3y - 2z = 0

$$2x - y + 4z = 0$$

$$x - 11y + 14z = 0$$

The given system of equations in the matrix form are written as below.

$$\begin{bmatrix} 1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$X = O$$

where
$$A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
and $O = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

$$A = 1(-14 + 44) - 3(28 - 4) - 2(-22 + 1)$$

$$= 30 - 72 + 42 = 0$$

and therefore the system has a non-trivial solution. Now, we may write first two of the given equations

$$x + 3y = 2z$$
 and $2x - y = -4z$

Solving these equations in terms of z, we get

$$x = -\frac{10}{7}z$$
 and $y = \frac{8}{7}z$

Putting $x = -\frac{10}{7}z$ and $y = \frac{8}{7}z$ in third equation of the

given system

we get, LHS =
$$-\frac{10}{7}z - \frac{88}{7}z + 14z = 0$$
 = RHS

Now, if z = 7k, then x = -10k and y = 8k.

Hence, x = -10k, y = 8k and z = 7k (where k is arbitrary) are the required solutions.

Example 48. Solve the system of equations

$$2x + 3y - 3z = 0,$$

3x - 3y + z = 0

and 3x - 2y - 3z = 0

Sol. We have, 2x + 3y - 3z = 0

$$3x - 3y + z = 0$$

$$3x - 2y - 3z = 0$$

The given system of equations in the matrix form are written as below.

$$\begin{bmatrix} 2 & 3 & -3 \\ 3 & -3 & 1 \\ 3 & -2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

where
$$A = \begin{bmatrix} 2 & 3 & -3 \\ 3 & -3 & 1 \\ 3 & -2 & -3 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $O = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

$$A = 2(9+2) - 3(-9-3) - 3(-6+9)$$
$$= 22 + 36 - 9 = 49 \neq 0$$

Hence, the equations have a unique trivial solution x = 0, y = 0 and z = 0 only.

Echelon Form of a Matrix

A matrix *A* is said to be in echelon form, if

- (i) The first non-zero element in each row is 1.
- (ii) Every non-zero row in A preceds every zero-row.
- (iii) The number of zeroes before the first non-zero element in 1st, 2nd, 3rd, ... rows should be in increasing order.

For example,

$$(i) \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \quad (ii) \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 4 & 5 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(iii) \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 4 & 3 \\ 0 & 0 & 1 & 2 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Rank of Matrix

The rank of a matrix is said to be r, if

- (i) It has at least minors of order r is different from zero.
- (ii) All minors of A of order higher than r are zero. The rank of A is denoted by $\rho(A)$.

Note

- **1.** The rank of a zero matrix is zero and the rank of an identity matrix of order *n* is *n*.
- 2. The rank of a matrix in echelon form is equal to the number of non-zero rows of the matrix.
- **3.** The rank of a non-singular matrix ($|A| \neq 0$) of order *n* is *n*.

Properties of Rank of Matrices

(i) If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{m \times n}$, then

$$\rho(A+B) \le \rho(A) + \rho(B)$$

(ii) If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{n \times p}$, then

$$\rho(AB) \leq \rho(A)$$
 and $\rho(AB) \leq \rho(B)$

(iii) If $A = [a_{ii}]_{n \times n}$, then $\rho(A) = \rho(A')$

Example 49. Find the rank of $\begin{vmatrix} 3 & -1 & 2 \\ -3 & 1 & 2 \end{vmatrix}$.

Sol. We have,

Let
$$A = \begin{bmatrix} 3 & -1 & 2 \\ -3 & 1 & 2 \\ -6 & 2 & 4 \end{bmatrix}$$

Applying
$$R_2 \to R_2 + R_1$$
 and $R_3 \to R_3 + 2R_1$, we get
$$A = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 8 \end{bmatrix}$$

Applying
$$R_3 \rightarrow R_3 - 2R_2$$
, we get

Applying
$$R_3 \to R_3 - 2R_2$$
, we get
$$A = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

Applying
$$R_1 \to \left(\frac{1}{3}\right) R_1$$
 and $R_2 \to \left(\frac{1}{4}\right) R_2$, then

$$A = \begin{bmatrix} 1 & -\frac{1}{3} & \frac{2}{3} \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

This is Echelon form of matrix A.

Rank = Number of non-zero rows $\Rightarrow \rho(A) = 2$

Aliter
$$|A| = \begin{vmatrix} 3 & -1 & 2 \\ -3 & 1 & 2 \\ -6 & 2 & 4 \end{vmatrix}$$

$$= 3(4-4) + 1(-12+12) + 2(-6+6) = 0$$

 \therefore Rank of $A \neq 3$ but less than 3.

There will be ${}^{3}C_{2} \times {}^{3}C_{2} = 9$ square minors of order 2. Now, we consider of there minors.

(i)
$$\begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 0$$

(ii)
$$\begin{vmatrix} 3 & 2 \\ -6 & 4 \end{vmatrix} = 24 \neq 0$$

Hence, all minors are not zero.

Hence, rank of A is 2. $\Rightarrow \rho(A) = 2$

Solutions of Linear Simultaneous **Equations Using Rank Method**

Let us consider a system of n linear equations in nunknowns say $x_1, x_2, x_3, ..., x_n$ given as below.

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + \dots + a_{1n} x_n = b_1$$

$$a_{21} x_1 + a_{22} x_2 + a_{23} x_3 + \dots + a_{2n} x_n = b_2$$

$$a_{31} x_1 + a_{32} x_2 + a_{33} x_3 + \dots + a_{3n} x_n = b_3$$

$$\dots \qquad \dots \qquad \dots \qquad \dots$$

$$\dots \qquad \dots \qquad \dots \qquad \dots$$

$$a_{m1} x_1 + a_{m2} x_2 + a_{m3} x_3 + \dots + a_{mn} x_n = b_m$$

We write the above system of Eq. (i) in the matrix form as

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \dots \\ b_m \end{bmatrix}$$

$$\Rightarrow$$
 $AX = B$...(ii)

where
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix},$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix} \text{ and } B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \dots \\ b_m \end{bmatrix}$$

The matrix *A* is called the coefficient matrix and the matrix

$$C = [A:B] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & \dots & a_{1n} & \vdots & b_1 \\ a_{21} & a_{22} & a_{23} & \dots & \dots & a_{2n} & \vdots & b_2 \\ a_{31} & a_{32} & a_{33} & \dots & \dots & a_{3n} & \vdots & b_3 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots & \dots & \vdots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & \dots & a_{mn} & \vdots & b_m \end{bmatrix}$$

is called the augmented matrix of the given system of equations.

Types of Equations

- **1. Consistent Equation** If $\rho(A) = \rho(C)$
 - (i) **Unique Solution** If $\rho(A) = \rho(C) = n$, where n =number of knowns.
 - (ii) **Infinite Solution** If $\rho(A) = \rho(C) = r$, where
- **2. Inconsistent Equation** If $\rho(A) \neq \rho(C)$, then no solution.

Example 50. Determine for what values of λ and μ the following system of equations

$$x + y + z = 6$$
,
 $x + 2y + 3z = 10$

$$x + 2y + \lambda z = \mu$$

have (i) no solution? (ii) a unique solution?

(iii) an infinite number of solutions?

Sol. We can write the above system of equations in the matrix form

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \\ \mu \end{bmatrix}$$

$$\Rightarrow$$
 $AX =$

where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 \\ 10 \\ \mu \end{bmatrix}$$

∴ The augmented matrix

$$C = [A:B] = \begin{bmatrix} 1 & 1 & 1 & \vdots & 6 \\ 1 & 2 & 3 & \vdots & 10 \\ 1 & 2 & \lambda & \vdots & \mu \end{bmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we get

$$C = \begin{bmatrix} 1 & 1 & 1 & \vdots & 6 \\ 0 & 1 & 2 & \vdots & 4 \\ 0 & 1 & \lambda - 1 & \vdots & \mu - 6 \end{bmatrix}$$

Applying $R_3 \to R_3 - R_2$, we get

$$C = \begin{bmatrix} 1 & 1 & 1 & \vdots & 6 \\ 0 & 1 & 2 & \vdots & 4 \\ 0 & 0 & \lambda - 3 & \vdots & \mu - 10 \end{bmatrix}$$

(i) No solution $\rho(A) \neq \rho(C)$

i.e.
$$\lambda - 3 = 0$$
 and $\mu - 10 \neq 0$

$$\lambda = 3 \text{ and } \mu \neq 10$$

(ii) A unique solution $\rho(A) = \rho(C) = 3$

i.e.,
$$\lambda - 3 \neq 0$$
 and $\mu \in R$

$$\lambda \neq 3 \text{ and } \mu \in R$$

(iii) Infinite number of solutions

$$\rho(A) = \rho(C) (\angle 3)$$

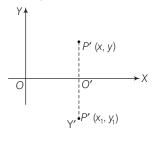
i.e.
$$\lambda - 3 = 0$$
 and $\mu - 10 = 0$

$$\lambda = 3$$
 and $\mu = 10$

Reflection Matrix

(i) Reflection in the X-axis

Let P(x,y) be any point and $P'(x_1,y_1)$ be its image after reflection in the *X*-axis, then



$$\begin{cases} x_1 = x \\ y_1 = -y \end{cases}$$
 [O' is the mid-point of P and P']

These may be rewritten as

$$\begin{cases} x_1 = 1 \cdot x + 0 \cdot y \\ y_1 = 0 \cdot x + (-1) \cdot y \end{cases}$$

These system of equations in the matrix form are written as below.

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Thus, the matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ describes the reflection of a point P(x, y) in the X-axis.

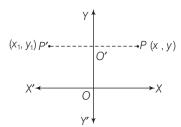
(ii) Reflection in the Y-axis

Let P(x,y) be any point and $P'(x_1,y_1)$ be its image after reflection in the *Y*-axis, then

$$\begin{cases} x_1 = -x \\ y_1 = y \end{cases}$$
 [O' is the mid-point of P and P']

These may be written as

$$\begin{cases} x_1 = (-1) \cdot x + 0 \cdot y \\ y_1 = 0 \cdot x + 1 \cdot y \end{cases}$$



These system of equations in the matrix form are written as below.

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Thus, the matrix $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ describes the reflection of a

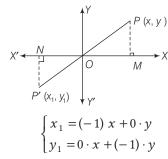
point P(x, y) in the Y-axis.

(iii) Reflection through the origin

Let P(x,y) be any point and $P'(x_1,y_1)$ be its image after reflection through the origin, then

$$\begin{cases} x_1 = -x \\ y_1 = -y \end{cases}$$
 [O' is the mid-point of P and P']

These may be written as



These system of equations in the matrix form are written as below.

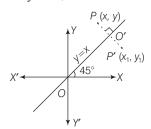
$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Thus, the matrix $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ describes the reflection of

a point P(x, y) through the origin.

(iv) Reflection in the line y = x

Let P(x,y) be any point and $P'(x_1,y_1)$ be its image after reflection in the line y=x, then



$$\begin{cases} x_1 = y \\ y_1 = x \end{cases}$$
 [O' is the mid-point of P and P']

These may be written as

$$\begin{cases} x_1 = 0 \cdot x + 1 \cdot y \\ y_1 = 1 \cdot x + 0 \cdot y \end{cases}$$

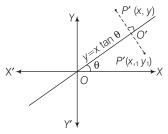
These system of equations in the matrix form are written as below.

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Thus, the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ describes the reflection of a point P(x, y) in the line y = x.

(v) Reflection in the line $y = x \tan \theta$

Let P(x, y) be any point and $P'(x_1, y_1)$ be its image after reflection in the line $y = x \tan \theta$, then



$$\begin{cases} x_1 = x \cos 2\theta + y \sin 2\theta \\ y_1 = x \sin 2\theta - y \cos 2\theta \end{cases}$$

[O' is the mid-point of P and P']

These may be written as

$$\begin{cases} x_1 = x \cdot \cos 2\theta + y \cdot \sin 2\theta \\ y_1 = x \cdot \sin 2\theta + y \cdot (-\cos 2\theta) \end{cases}$$

These system of equations in the matrix form are written as below.

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Thus, the matrix $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$ describes the

reflection of a point P(x, y) in the line $y = x \tan \theta$.

Note

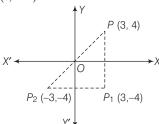
By putting $\theta = 0$, $\frac{\pi}{2}$, $\frac{\pi}{4}$, we can get the reflection matrices in the *X*-axis, *Y*-axis and the line y = x, respectively.

Example 51. The point P(3,4) undergoes a reflection in the *X*-axis followed by a reflection in the *Y*-axis. Show that their combined effect is the same as the single reflection of P(3,4) in the origin.

Sol. Let $P_1(x_1, y_1)$ be the image of P(3, 4) after reflection in the *X*-axis. Then,

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$

Therefore, the image of P(3, 4) after reflection in the X-axis is $P_1(3, -4)$.



Now, let $P_2(x_2, y_2)$ be the image of $P_1(3, -4)$ after reflection in the Y-axis, then

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$$

Therefore, the image of P_1 (3, - 4) after reflection in the *Y*-axis is P_2 (-3, -4).

Further, let P_3 (x_3 , y_3) be the image of P (3, 4) in the origin O. Then,

$$\begin{bmatrix} x_3 \\ y_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$$

Therefore, the image of P(3, 4) after reflection in the origin is $P_3(-3, -4)$. It is clear that $P_2 = P_3$

Hence, the image of P_2 of P often successive reflections in their X-axis and Y-axis is the same as P_3 , which is single reflection of P in the origin.

Example 52. Find the image of the point (-2, -7) under the transformations $(x, y) \rightarrow (x - 2y, -3x + y)$.

Sol. Let (x_1, y_1) be the image of the point (x, y) under the given transormations, then

$$\begin{cases} x_1 = x - 2y = 1 \cdot x + (-2) \cdot y \\ y_1 = -3x + y = (-3) \cdot x + 1 \cdot y \end{cases}$$

$$\Rightarrow \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ -7 \end{bmatrix} = \begin{bmatrix} -2 + 14 \\ 6 - 7 \end{bmatrix} = \begin{bmatrix} 12 \\ -1 \end{bmatrix}$$

Therefore, the required image is (12, -1)

Example 53. The image of the point A(2, 3) by the line mirror y = x is the point B and the image of B by the line mirror y = 0 is the point (α, β) . Find α and β . **Sol.** Let $B(x_1, y_1)$ be the image of the point A(2,3) about the line y = x, then

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Therefore, the image of A (2, 3) by the line mirror y = x is B (3, 2).

Given, image of *B* by the line mirror y = 0 (*X*-axis) is (α, β) , then

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

On comparing, we get $\alpha = 3$ and $\beta = -2$.

Example 54. Find the image of the point $(-\sqrt{2}, \sqrt{2})$ by the line mirror $y = x \tan\left(\frac{\pi}{8}\right)$.

Sol. Let
$$(x_1, y_1)$$
 be the image of $(-\sqrt{2}, \sqrt{2})$ about the line $y = x \tan\left(\frac{\pi}{8}\right)$.

On comparing
$$y = x \tan\left(\frac{\pi}{8}\right)$$
 by $y = x \tan\theta$

$$\theta = \frac{\pi}{8}$$

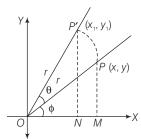
Now, $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} \begin{bmatrix} -\sqrt{2} \\ \sqrt{2} \end{bmatrix}$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} -\sqrt{2} \\ \sqrt{2} \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$

On comparing $x_1 = 0$ and $y_1 = -2$.

Therefore, the required image is (0, -2).

Rotation Through an Angle θ



Let P(x, y) be any point such that OP = r and $\angle POX = \emptyset$. Let OP rotate through an angle θ in the anti-clockwise direction such that $P'(x_1, y_1)$ is the new position.

$$OP' = r, \qquad [\because OP = OP']$$
then
$$\begin{cases} x_1 = x \cos \theta - y \sin \theta \\ x_1 = x \sin \theta + y \cos \theta \end{cases}$$

These system of equations in the matrix form are written as

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Thus, the matrix $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ describes a rotation of a

line segment through an angle θ .

:.

and

Remember Use of complex number

$$OP' = OP e^{i\theta}, i = \sqrt{-1}$$

$$(x_1 + iy_1) = (x + iy)(\cos\theta + i\sin\theta)$$

$$= (x \cos\theta - y\sin\theta) + i(x \sin\theta + y\cos\theta)$$

$$x_1 = x \cos\theta - y\sin\theta$$

$$y_1 = x \sin\theta + y\cos\theta$$

Example 55. Find the matrices of transformation T_1T_2 and T_2T_1 when T_1 is rotation through an angle 60° and T_2 is the reflection in the Y-axis. Also, verify that $T_1T_2 \neq T_2T_1$.

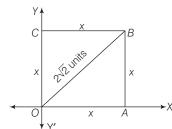
$$\begin{aligned} \textbf{Sol.} \ T_1 &= \begin{bmatrix} \cos 60^\circ & -\sin 60^\circ \\ \sin 60^\circ & \cos 60^\circ \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} \\ &\text{and} \quad T_2 &= \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \\ &\therefore \quad T_1 T_2 &= \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} \times \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1+0 & 0-\sqrt{3} \\ -\sqrt{3}+0 & 0+1 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} & \dots (i) \\ &\text{and} \quad T_2 T_1 &= \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \times \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1+0 & \sqrt{3}+0 \\ 0+\sqrt{3} & 0+1 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} & \dots (ii) \end{aligned}$$

It is clear from Eqs.(i) and (ii), then $T_1 T_2 \neq T_2 T_1$

Example 56. Write down 2×2 matrix A which

corresponds to a counterclockwise rotation of 60° about the origin. In the diagram the square *OABC* has its diagonal *OB* of $2\sqrt{2}$ units in length. The square is rotated counterclockwise about *O* through 60° . Find the coordiates of the vertices of the square after rotating.

Sol. The matrix describes a rotation through an angle 60° in counterclockwise direction is



$$\begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} \\ \sin 60^{\circ} & \cos 60^{\circ} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}$$

Since, each side of the square be x,

then
$$x^{2} + x^{2} = (2\sqrt{2})^{2}$$

$$\Rightarrow 2x^{2} = 8 \Rightarrow x^{2} = 4$$

$$\therefore x = 2 \text{ units}$$

Therefore, the coordinates of the vertices O, A, B and C are (0, 0), (2, 0),

(2, 2) and (0, 2), respectively. Let after rotation A map into A', B map into B', C map into C' but the O map into itself.

If coordinates of A', B' and C' are (x', y'), (x'', y'') and (x''', y'''), respectively.

$$\therefore \begin{bmatrix} x' \\ y' \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 2\sqrt{3} \end{bmatrix} = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$

$$\therefore \quad x' = 1, y' = \sqrt{3} \implies A(2,0) \rightarrow A'(1,\sqrt{3})$$

$$\text{and} \begin{bmatrix} x'' \\ y'' \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 - 2\sqrt{3} \\ 2\sqrt{3} + 2 \end{bmatrix} = \begin{bmatrix} 1 - \sqrt{3} \\ \sqrt{3} + 1 \end{bmatrix}$$

$$\therefore \quad x'' = 1 - \sqrt{3}, y'' = \sqrt{3} + 1$$

$$\Rightarrow \quad B(2,2) \rightarrow B'(1 - \sqrt{3},\sqrt{3} + 1)$$

$$\begin{bmatrix} x''' \\ y''' \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -2\sqrt{3} \\ 2 \end{bmatrix} = \begin{bmatrix} -\sqrt{3} \\ 1 \end{bmatrix}$$

$$\therefore \quad x''' = -\sqrt{3}, y''' = 1$$

$$\Rightarrow \quad C(0,2) \rightarrow C'(-\sqrt{3},1)$$

Eigen Values or Characteristic roots and Characteristic Vectors of a square matrix

Let *X* be any non-zero vector satisfying

$$AX = \lambda X$$
 ...(i)

where λ is any scalar, then λ is said to be eigen value or characteristic root of square matrix A and the vector X is called eigen vector or characteristic vector of matrix A. Now, from Eq. (i), we have

$$(A - \lambda I) X = O$$

Since, $X \neq O$, we deduce that the matrix $(A - \lambda I)$ is singular, so that its determinant is 0 i.e.

$$|A - \lambda I| = 0 \qquad \dots (ii)$$

is called characteristic equation of matrix A.

If A be $n \times n$ matrix, then equation $|A - \lambda I| = 0$ reduces to polynomial equation of nth from degree in λ , which given n values of λ i.e., matrix A will have n characteristic roots or eigen values.

Important Properties of Eigen Values

- (i) Any square matrix A and its transpose A^T have the same eigen values.
- (ii) The sum of the eigen values of a matrix is equal to the trace of the matrix.

- (iii) The product the eigen values of a matrix A is equal to the determinant of A.
- (iv) If $\lambda_1, \lambda_2, \lambda_3, \lambda_4, ..., \lambda_n$ are the eigen values of A, then the eigen values of
- (a) kA are $k\lambda_1, k\lambda_2, k\lambda_3, k\lambda_4, ..., k\lambda_n$.
- (b) A^m are λ_1^m , λ_2^m , λ_3^m , λ_4^m , ..., λ_n^m .
- (c) A^{-1} are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \frac{1}{\lambda_3}, \frac{1}{\lambda_4}, \dots, \frac{1}{\lambda_n}$.

Remark

- All the eigen values of a real symmetric matrix are real and the eigen vectors corresponding to two distinct eigen values are orthogonal.
- 2. All the eigen values of a real skew-symmetric matrix are purely imaginary or zero. An odd order skew-symmetric matrix is singular and hence has zero as an eigen value.
- **Example 57.** Let matrix $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ find the

non-zero column vector X such that $AX = \lambda X$ for some scalar λ .

Sol. The characteristic equation is $|A - \lambda I| = 0$

$$\Rightarrow \begin{bmatrix} 4 - \lambda & 6 & 6 \\ 1 & 3 - \lambda & 2 \\ -1 & -4 & -3 - \lambda \end{bmatrix} = 0$$

$$\Rightarrow \qquad \qquad \lambda^3 - 4\lambda^2 - \lambda + 4 =$$

or
$$(\lambda + 1)(\lambda - 1)(\lambda - 4) = 0$$

The eigen values are $\lambda = -1, 1, 4$

If
$$\lambda = -1$$
, we get $5x + 6y + 6z = 0$, $x + 4y + 2z = 0$

and
$$-x - 4y - 2z = 0$$

Giving $\frac{x}{6} = \frac{y}{2}$

$$\frac{x}{6} = \frac{y}{2} = \frac{z}{-7}, X = \begin{bmatrix} 6\\2\\-7 \end{bmatrix}$$

If $\lambda = 1$, we get 3x + 6y + 6z = 0, x + 2y + 2z = 0and -x - 4y - 4z = 0

Giving

$$\frac{x}{0} = \frac{y}{1} = \frac{z}{-1}, X = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

If $\lambda = 4$, we get $0 \cdot x + 6y + 6z = 0$, x - y + 2z = 0 and -x - 4y - 7z = 0

Giving,

$$\frac{x}{3} = \frac{y}{1} = \frac{3}{-1}, x = \begin{bmatrix} 3\\1\\-1 \end{bmatrix}$$

Hence, vector are
$$X = \begin{bmatrix} 6 \\ 2 \\ -7 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$

Example 58. If A and P are the square matrices of the same order and if P be invertible, show that the matrices A and $P^{-1}AP$ have the same characteristic roots.

Sol. Let $P^{-1}AP = B$

$$|B - \lambda I| = |P^{-1}AP - \lambda I|$$

$$= |P^{-1}AP - P^{-1}\lambda P|$$

$$= |P^{-1}(A - \lambda I)P|$$

$$= |P^{-1}||A - \lambda I||P|$$

$$= \frac{1}{|P|}|A - \lambda I||P| = |A - \lambda I|$$

Example 59. Show that the characteristic roots of an idempotent matrix are either zero or unity.

Sol. Let *A* be an idempotent matrix, then

If λ be an eigen value of the matrix A corresponding to eigen vector X, so that

eigen vector
$$X$$
, so that
$$AX = \lambda X \qquad ...(ii)$$
where $X \neq 0$
From Eq. (ii), $A(AX) = A(\lambda X)$

$$\Rightarrow (AA) X = \lambda (AX)$$

$$\Rightarrow A^2 X = \lambda (\lambda X) \qquad [from Eq. (ii)]$$

$$\Rightarrow AX = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

$$\Rightarrow \lambda X = \lambda^2 X \qquad [from Eq. (ii)]$$

Example 60. If 3, -2 are the eigen values of a non-singular matrix A and |A| = 4, find the eigen values of adj (A).

Sol. ::
$$A^{-1} = \frac{\text{adj } A}{|A|}$$
, if λ is eigen value of A , then λ^{-1} is eigen value of A^{-1} .

Thus, for adj
$$(A)X = (A^{-1}X)|A| = |A|\lambda^{-1}I$$

Thus, eigen value corresponding to $\lambda = 3$ is $\frac{4}{3}$ and

corresponding to
$$\lambda = -2$$
 is $\frac{4}{-2} = -2$

Cayley-Hamilton Theorem

Every square matrix A satisfies its characteristic equation $|A - \lambda I| = 0$

i.e.,
$$a_0 \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + ... + a_n = 0$$

 \therefore By Cayley-Hamilton theorem

$$\begin{aligned} a_0 A^n &+ a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_n I = O \\ \Rightarrow A^{-1} &= -\left\{ \frac{a_0}{a_n} A^{n-1} + \frac{a_1}{a_n} A^{n-2} + \frac{a_2}{a_n} A^{n-3} + \dots + \frac{a_{n-1}}{a_n} I \right\} \end{aligned}$$

Example 61. Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$ and hence find its inverse using

Cayley-hamilton theorem.

Sol. Characteristic equation is

$$|A - \lambda I| = 0 \implies \begin{bmatrix} 2 - \lambda & 1 \\ 3 & 2 - \lambda \end{bmatrix} = 0$$

scalar $\lambda,$ then $9\,\text{sec}^2\,\theta$ is equal to

$$\Rightarrow (2 - \lambda)^2 - 3 = 0$$

$$\Rightarrow \lambda^2 - 4\lambda + 1 = 0$$

∴ By Cayley-hamilton theorem,

$$A^2 - 4A + I = O$$
 or $I = 4A - A^2$

Multiplying by A^{-1} , we get

$$A^{-1} = 4A^{-1}A - A^{-1}AA$$

$$= 4I - IA = 4I - A$$

$$= 4\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$$

Exercise for Session 4

1	If the system of equations $ax + y = 1$, $x + 2y = 3$, $2x + 3y = 5$ are consistent, then a is given by			
	(a) 0	(b) 1	(c) 2	(d) None of these
2	The system of equations $x + y + z = 2$, $2x + y - z = 3$, $3x + 2y + \lambda z = 4$ has unique solution if			
	(a) $\lambda \neq 0$	(b) $-1 < \lambda < 1$	(c) $\lambda = 0$	$(d)-2<\lambda<2$
3	The value of a for which the following system of equations $a^3x + (a+1)^3y + (a+2)^3z = 0$,			
	ax + (a + 1)y + (a + 2)z = 0, $x + y + z = 0$ has a non-trivial solution is equal to			
	(a) 2	(b) 1	(c) 0	(d) -1
4	The number of solutions of the set of equations			
	$\frac{2x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0, \frac{x^2}{a^2} + \frac{2y^2}{b^2} - \frac{z^2}{c^2} = 0, -\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{2z^2}{c^2} = 0 \text{ is}$			
	(a) 6	(b) 7	(c) 8	(d) 9
5	The matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is the matrix reflection in the line			
	(a) $x = 1$	(b) $x + y = 1$	(c) $y = 1$	(d) $x = y$
6	The matrix S is rotation through an angle 45° and G is the reflection about the line $y = 2x$, then $(SG)^2$ is equal to			
	(a) 7 <i>I</i>	(b) 5/	(c) 3/	(d) <i>I</i>
7	If $A = \begin{bmatrix} -2 & 3 \\ -1 & 1 \end{bmatrix}$, then A^3 i	is equal to		
	(a) 2A	(b) A	(c) 21.	(d) /
8	(a) $2A$ (b) A (c) $2I$. (d) I If $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ and the sum of eigen values of A is m and product of eigen values of A is n , then $m + n$ is equal			
	to	(b) 10	(a) 1.1	(d) 16
	(a) 10	(b) 12	(c) 14	(d) 16
9	If $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$ and θ be the angle between the two non-zero column vectors X such that $AX = \lambda X$ for some			

(c) 11

(d) 10

Answers

Exercise for Session 4

1. (a) 2. (a) 3. (d) 4. (d) 5. (d) 6. (d)

7. (d) 8. (b) 9. (d)