Session 3

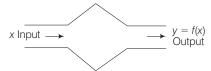
Definition of Functions, Domain, Codomain and Range, Composition of Mapping, Equivalence Classes, Partition of Set, Congruences

Functions

Introduction

If two variable quantities x and y according to some law are so related that corresponding to each value of x (considered only real), which belongs to set E, there corresponds one and only one finite value of the quantity y (i.e., unique value of y). Then, y is said to be a function (single valued) of x, defined by y = f(x), where x is the **argument** or **independent variable** and y is the **dependent variable** defined on the set E.

For example, If r is the radius of the circle and A its area, then r and A are related by $A = \pi r^2$ or A = f(r). Then, we say that the area A of the circle is the function of the radius r. **Graphically**,



Where, y is the image of x and x is the pre-image of y under f.

Remark

- If to each value of x, which belongs to set E there corresponds one or more than one values of the quantity y. Then, y is called the multiple valued function of x defined on the set E.
- **2.** The word 'FUNCTION' is used only for single valued function. For example, $y = \sqrt{x}$ is single valued functions but $y^2 = x$ is a multiple valued function.
 - \therefore $y^2 = x \Rightarrow y = \pm \sqrt{x}$ for one value of x, y gives two values.

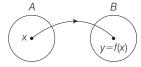
Definition of Functions

If A and B be two non-empty sets, then a function from A to B associates to each element x in A, a unique element f(x) in B and is written as

$$f: A \to B \text{ or } A \xrightarrow{f} B$$

which is read as f is a mapping from A to B.

The other terms used for functions are **operators** or **transformations**.



Remark

- **1.** If $x \in A$, $y = [f(x)] \in B$, then $(x, y) \in f$.
- **2.** If $(x_1, y_1) \in f$ and $(x_2, y_2) \in f$, then $y_1 = y_2$.

Domain, Codomain and Range

Domain The set of A is called the domain of f (denoted by D_f).

Codomain The set of *B* is called the codomain of f (denoted by C_f).

Range The range of f denoted by R_f is the set consisting of all the images of the elements of the domain A.

Range of $f = [f(x) : x \in A]$

The range of f is always a subset of codomain B.

Onto and Into Mappings

In the mapping $f: A \rightarrow B$ such

$$f(A) = B$$

i.e., Range = Codomain

Then, the function is **Onto** and if $f(A) \subset B$, i.e. Range \subset Codomain, then the function is **Into**.

Remark

Onto functions is also known as surjective.

Method to Test Onto or Into Mapping

Let $f: A \to B$ be a mapping. Let y be an arbitrary element in B and then y = f(x), where $x \in A$. Then, express x in terms of y.

Now, if $x \in A$, $\forall y \in B$, then f is onto and if $x \notin A$, $\forall y \in B$, then f is into.

For into mapping Find an element of *B* which is not *f*-image of any element of *A*.

One-one and Many-one Mapping

(i) The mapping $f: A \rightarrow B$ is called one-one mapping, if no two different elements of A have the same image in B. Such a mapping is also known as **injective mapping** or an **injection** or **monomorphism**.

Method to Test One-one If $x_1, x_2 \in A$,

then
$$f(x_1) = f(x_2)$$

 $\Rightarrow x_1 = x_2 \text{ and } x_1 \neq x_2$
 $\Rightarrow f(x_1) \neq f(x_2)$

(ii) The mapping $f:A\to B$ is called many-one mapping, if two or more than two different elements in A have the same image in B.

Method to Test Many-one

If
$$x_1, x_2 \in A$$
, then $f(x_1) = f(x_2)$
 $\Rightarrow x_1 \neq x_2$

From above classification, we conclude that function is of four types

- (i) One-one onto (bijective)
- (ii) One-one into
- (iii) Many-one onto
- (iv) Many-one into

Number of Functions (Mappings) at One Place in a Table

Let $f: A \to B$ be a mapping such that A and B are finite sets having m and n elements respectively, then

Description of mappings

- (i) Total number of mappings from A to B
- (ii) Total number of one-one mappings from A to B
- (iii) Total number of many-one mappings from A to B
- (iv) Total number of onto (surjective) mappings from A to B
- (v) Total number of one-one onto (bijective) mappings from *A* to *B*
- (vi) Total number of into mappings from A to B
- **Example 21.** Let *N* be the set of all natural numbers. Consider $f: N \to N: f(x) = 2x, \forall x \in N$. Show that f is one-one into.

Sol. Let $x_1, x_2 \in N$, then

$$f(x_1) = f(x_2)$$

$$\Rightarrow \qquad 2x_1 = 2x_2 \implies x_1 = x_2$$

$$\therefore f \text{ is one-one.}$$

Let

$$y = 2x$$
, then $x = \frac{y}{2}$

Now, if we put y = 5, then $x = \frac{5}{2} \notin N$.

This show that $5 \in N$ has no pre-image in N. So, f is into. Hence, f is one-one and into.

Example 22. Show that the mapping

 $f:R \to R: f(x) = \cos x, \forall x \in R$ is neither one-one nor onto.

Sol. Let $x_1, x_2 \in R$.

Then,
$$f(x_1) = f(x_2) \implies \cos x_1 = \cos x_2$$

 $\implies x_1 = 2n\pi \pm x_2 \implies x_1 \neq x_2$
 $\therefore f \text{ is not one-one.}$
Let $y = \cos x, \text{ but } -1 \leq \cos x \leq 1$
 $\therefore y \in [-1, 1]$
 $[-1, 1] \subset R$

So, f is into (not onto).

Hence, f is neither one-one nor onto.

Constant Mapping

The mapping $f: A \rightarrow B$ is known as a constant mapping, if the range of B has only one element.

For all $x \in A$, f(x) = a, where as $a \in B$.

Identity Mapping

The mapping $f: A \to B$ is known as an identity mapping, if $f(a) = a, \forall a \in A$ and it is denoted by I_A .

Remark

 I_A is bijective or bijection.

Equal Mapping

Let *A* and *B* be two mappings are $f: A \rightarrow B$ and $g: A \rightarrow B$ such that

$$f(x) = g(x), \forall x \in A$$

Then, the mappings f and g are equal and written as f = g.

Inclusion Mapping

The mapping $f: A \to B$ is known as inclusion mapping. If $A \subseteq B$, then $f(a) = a, \forall a \in A$.

Equivalent or Equipotent or Equinumerous Set

The mapping $f: A \to B$ is known as equivalent sets, if A and B are both one-one and onto and written as $A \sim B$ which is read as 'A wiggle B'.

Inverse Mapping

If $f: A \to B$ be one-one and onto mapping, let $b \in B$, then there exist exactly one element $a \in A$ such that f(a) = b, so we may define

$$f^{-1}: B \to A: f^{-1}(b) = a$$
$$f(a) = b$$

The function f^{-1} is called the inverse of f. A functions is invertible iff f is one-one onto.

Remark

- **1.** $f^{-1}(b) \subseteq A$
- **2.** If $f: A \rightarrow B$ and $g: B \rightarrow A$, then f and g are said to be invertible

Example 23. Let $f: R \to R$ be defined by

 $f(x) = \cos(5x + 2)$. Is f invertible? Justify your answer.

Sol. For invertible of f, f must be bijective (i.e., one-one onto).

If
$$x_1, x_2 \in R$$
,
then $f(x_1) = f(x_2)$
 $\Rightarrow \cos(5x_1 + 2) = \cos(5x_2 + 2)$
 $\Rightarrow 5x_1 + 2 = 2n\pi \pm (5x_2 + 2)$
 $\Rightarrow x_1 \neq x_2$

 \therefore *f* is not one-one.

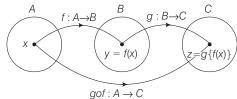
But
$$-1 \le \cos(5x + 2) \le 1$$
$$\therefore \qquad -1 \le f(x) \le 1$$
$$\text{Range} = [-1, 1] \subset R$$

 \therefore f is into mapping.

Hence, the function f(x) is no bijective and so it is not invertible.

Composition of Mapping

Let A, B and C be three non-empty sets. Let $f: A \rightarrow B$ and $g: B \to C$ be two mappings, then $gof: A \to C$. This function is called the product or composite of f and g, given by $(gof)x = g\{f(x)\}, \forall x \in A$.



Important Remarks

1. (i)
$$(fog)x = f\{g(x)\}$$
 (ii) $(fof)x = f\{f(x)\}$ (iii) $(gog)x = g\{g(x)\}$ (iv) $(fg)x = f(x) \cdot g(x)$ (v) $(f \pm g)x = f(x) \pm g(x)$ (vi) $\left(\frac{f}{g}\right)x = \frac{f(x)}{g(x)}; g(x) \neq 0$

- **2.** Let $h: A \rightarrow B$, $g: B \rightarrow C$ and $f: C \rightarrow D$ be any three functions. Then, $(f \circ g) \circ h = f \circ (g \circ h)$.
- **3.** Let $f: A \rightarrow B, g: B \rightarrow C$ be two functions, then (i) f and g are injective $\Rightarrow gof$ is injective.
 - (ii) f and g are surjective $\Rightarrow gof$ is surjective.
 - (iii) f and g are bijective $\Rightarrow g \circ f$ is bijective.
- 4. An injective mapping from a finite set to itself in bijective.

Example 24. If $f:R \to R$ and $g:R \to R$ be two mapping such that $f(x) = \sin x$ and $g(x) = x^2$, then

- (i) prove that $fog \neq gof$.
- (ii) find the values of $(fog)\frac{\sqrt{\pi}}{2}$ and $(gof)(\frac{\pi}{2})$.

Sol. (i) Let $x \in R$

$$\therefore (f \circ g) x = f \{g(x)\} \qquad [\because g(x) = x^2]$$
$$= f \{x^2\} = \sin x^2 \qquad \dots(i)$$
$$[\because f(x) = \sin x]$$

and
$$(gof)x = g\{f(x)\}$$

$$= g(\sin x) \qquad [\because f(x) = \sin x]$$

$$= \sin^2 x \qquad ...(ii)$$

$$[\because g(x) = x^2]$$

From Eqs. (i) and (ii), we get $(fog)x \neq (gof)x$, $\forall x \in R$ Hence, $fog \neq gof$

(ii) From Eq. (i), $(fog)x = \sin x^2$

$$\therefore (fog)\frac{\sqrt{\pi}}{2} = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

and from Eq. (ii), $(gof)x = \sin^2 x$

$$\therefore (gof)\frac{\pi}{3} = \sin^2 \frac{\pi}{3} = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}$$

Example 25. If the mapping f and g are given by

$$f = \{(1, 2), (3, 5), (4, 1)\}$$

 $g = \{(2, 3), (5, 1), (1, 3)\},$
flown pairs in the mapping fog and g

write down pairs in the mapping fog and gof.

Sol. Domain $f = \{1, 3, 4\}$, Range $f = \{2, 5, 1\}$

Domain $g = \{2, 5, 1\}$, Range $g = \{1, 3\}$

Range
$$f = Dom g = \{(2, 5, 1)\}$$

∴ gof mapping is defined.

Then, gof mapping defined following way

$$\{1, 3, 4\} \xrightarrow{f} \{2, 5, 1\} \xrightarrow{g} \{1, 3\}$$

$$gof$$

We see that,
$$f(1) = 2$$
, $f(3) = 5$, $f(4) = 1$
and $g(2) = 3$, $g(5) = 1$, $g(1) = 3$
 \therefore $(gof)(1) = g\{f(1)\} = g(2) = 3$
 $(gof)(3) = g\{f(3)\} = g(5) = 1$

$$(gof)(4) = g\{f(4)\} = g(1) = 3$$

 $gof = \{(1, 3), (3, 1), (4, 3)\}$

Now, since Range of $f \subset \text{Dom } f$

∴ fog is defined.

Hence,

Then, fog mapping defined following way

$$\{2, 5, 1\} \xrightarrow{g} \{1, 3, 4\} \xrightarrow{f} \{2, 5, 1\}$$
for see that $g(2) = 3$, $g(5) = 1$, $g(1) = 3$

We see that,
$$g(2) = 3$$
, $g(5) = 1$, $g(1) = 3$
 $f(1) = 2$, $f(3) = 5$, $f(4) = 1$
 $f(5) = 2$
 $f(6) = 3$
 $f(6) = 4$
 $f(6$

Equivalence Classes

If R be an equivalence relation on a set A, then [a] is equivalence class of a with respect to R. Symbolically, X_a or $[a] = \{x : x \in X, x R a\}$.

Remark

- 1. Square brackets[] are used to denote the equivalence classes.
- **2.** $a \in [a]$ and $a \in [b] \Rightarrow [a] = [b]$
- **3.** Either [a] = [b] or $[a] \cap [b] = \phi$
- **4.** Equivalence class of a also denoted by E(a) or \overline{a} .
- **5.** If $a \sim b$, $\frac{(a-b)}{m} = k$, the total number of equivalence class is m.
- **Example 26.** Let $I = \{0, \pm 1, \pm 2, \pm 3, \pm 4, ...\}$ and $R = \{(a,b): (a-b)/4 = k, k \in I\}$ is an equivalence relation, find equivalence class.

Sol. Given,
$$\frac{a-b}{4} = k$$

 $\Rightarrow a = 4k + b$, where $0 \le b < 4$

It is clear b has only value in 0, 1, 2, 3.

- (i) Equivalence class of $[0] = \{x : x \in I \text{ and } x \sim 0\}$ = $\{x : x - 0 = 4k\} = \{0, \pm 4, \pm 8, \pm 12, ...\}$ where, $k = 0, \pm 1, \pm 2, \pm 3, ...$
- (ii) Equivalence class of $[1] = \{x : x \in I \text{ and } x \sim 1\}$ = $\{x : x - 1 = 4k\} = \{x : x = 4k + 1\}$ = $\{..., -11, -7, -3, 1, 5, 9, ...\}$
- (iii) Equivalence class of [2] = $\{x : x \in I \text{ and } x \sim 2\}$ = $\{x : x - 2 = 4k\} = \{x : x = 4k + 2\}$ = $\{..., -10, -6, -2, 2, 6, 10, ...\}$
- (iv) Equivalence class of [3] = $\{x : x \in I \text{ and } x \sim 3\}$ = $\{x : x - 3 = 4k\} = \{x : x = 4k + 3\}$ = $\{..., -9, -5, -1, 5, 9, 13, ...\}$

Continue this process, we see that the equivalence class

$$[4] = [0], [5] = [1], [6] = [2], [7] = [3], [8] = [0]$$

Hence, total equivalence relations are [0], [1], [2], [3] and also clear

- (i) $I = [0] \cup [1] \cup [2] \cup [3]$
- (ii) every equivalence is a non-empty.
- (iii) for any two equivalence classes $[a] \cap [b] = \emptyset$.

Partition of a Set

If A be a non-empty set, then a partition of A, if

- (i) *A* is a collection of non-empty disjoint subsets of *A*.
- (ii) union of collection of non-empty sets is A.

i.e., If A be a non-empty set and A_1 , A_2 , A_3 , A_4 are subsets of A, then the set $\{A_1, A_2, A_3, A_4\}$ is called partition, if

- (i) $A_1 \cup A_2 \cup A_3 \cup A_4 = A$
- (ii) $A_1 \cap A_2 \cap A_3 \cap A_4 = \emptyset$

For example,

If $A = \{0, 1, 2, 3, 4\}$ and $A_1 = \{0\}$, $A_2 = \{1\}$, $A_3 = \{4\}$ and $A_4 = \{2, 3\}$, then we see that for $P = \{A_1, A_2, A_3, A_4\}$

- (i) all A_1 , A_2 , A_3 , A_4 are non-empty subset of A
- (ii) $A_1 \cup A_2 \cup A_3 \cup A_4 = \{0, 1, 2, 3, 4\} = A$ and
- (iii) $A_i \cap A_j \neq \emptyset, \forall i \neq j (i, j = 1, 2, 3, 4)$ Hence, from definition $P = \{A_1, A_2, A_3, A_4\}$ is partition of A.

Congruences

Let m be a positive integer, then two integers a and b are said to be congruent modulo m, if a - b is divisible by m.

i.e.,
$$m) a - b (\lambda)$$

$$a - b$$

$$- +$$

$$0$$

 $\therefore a - b = m\lambda$, where λ is a positive integer.

The congruent modulo 'm' is defined on all $a \ b \in I$ by $a \equiv b \pmod{m}$, if $a - b = m\lambda$, $\lambda \in I_+$.

Example 27. Find congruent solutions of $155 \equiv 7 \pmod{4}$.

Sol. Since,
$$\left(\frac{155-7}{4} = \frac{148}{4} = 37\right)$$

and $a = 155, b = 7, m = 4$

$$\therefore \qquad \lambda = \frac{a-b}{4} = \frac{155-7}{4} = \frac{148}{4}$$
[here, $a = 155, b = 7$]
$$= 37 \text{ (integer)}$$

Example 28. Find all congruent solutions of
$$8x \equiv 6 \pmod{14}$$
.

Sol. Given, $8x \equiv 6 \pmod{14}$

$$\lambda = \frac{8x - 6}{14}, \text{ where } \lambda \in I_+$$

$$\therefore 8x = 14\lambda + 6$$

$$\Rightarrow \qquad x = \frac{14\lambda + 6}{8}$$

$$\Rightarrow x = \frac{7\lambda + 3}{4}$$

$$= \frac{4\lambda + 3(\lambda + 1)}{4}$$

$$x = \lambda + \frac{3}{4}(\lambda + 1), \text{ where } \lambda \in I_{+}$$

and here greatest common divisor of 8 and 14 is 2, so there are two required solutions.

For $\lambda = 3$ and 7, x = 6 and 13.

Exercise for Session 3

1.	The values of b an	dc for which the identity $f(x)$	+ 1) - f(x) = 8x + 3 is satisfie	ed, where $f(x) = bx^2 + cx + d$, are
	(a) $b = 2$, $c = 1$	(b) $b = 4$, $c = -1$	(c) $b = -1$, $c = 4$	(d) $b = -1$, $c = 1$

2. If $f(x) = \frac{x-1}{x+1}$, then f(ax) in terms of f(x) is equal to

(a)
$$\frac{f(x) + a}{1 + af(x)}$$

(b)
$$\frac{(a-1)f(x)+a+1}{(a+1)f(x)+a-1}$$

(b)
$$\frac{(a-1)f(x)+a+1}{(a+1)f(x)+a-1}$$
 (c) $\frac{(a+1)f(x)+a-1}{(a-1)f(x)+a+1}$

(d) None of these

3. If
$$f$$
 be a function satisfying $f(x + y) = f(x) + f(y)$, $\forall x, y \in R$. If $f(1) = k$, then $f(n)$, $n \in N$ is equal to (a) k^n (b) nk (c) k (d) None of these

4. If $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ is a function described by the formula $g(x) = \alpha x + \beta$, what values should be assigned to α and β ?

(a)
$$\alpha = 1, \beta = 1$$

(b)
$$\alpha = 2, \beta = -1$$

(c)
$$\alpha = 1 \beta = -2$$

(d)
$$\alpha = -2, \beta = -1$$

5. The values of the parameter α for which the function $f(x) = 1 + \alpha x$, $\alpha \neq 0$ is the inverse of itself, is

(b)
$$-1$$

(d)2

6. If $f(x) = (a - x^n)^{1/n}$, where a > 0 and $n \in \mathbb{N}$, then fof (x) is equal to

 $(d)a^n$

7. If $f(x) = (ax^2 + b)^3$, the function g such that f(g(x)) = g(f(x)), is given by

(a)
$$g(x) = \left(\frac{b - x^{1/3}}{a}\right)^{1/2}$$
 (b) $g(x) = \frac{1}{(ax^2 + b)^3}$ (c) $g(x) = (ax^2 + b)^{1/3}$

(b)
$$g(x) = \frac{1}{(ax^2 + b)^3}$$

(c)
$$g(x) = (ax^2 + b)^{1/3}$$

(d)
$$g(x) = \left(\frac{x^{1/3} - b}{a}\right)^{1/2}$$

8. Which of the following functions from I to itself are bijections?

(a)
$$f(x) = x^3$$

(b)
$$f(x) = x + 1$$

$$(c) f(x) = 2x + 1$$

$$(\mathsf{d}) f(x) = x^2 + x$$

9. Let $f: R - \{n\} \to R$ be a function defined by $f(x) = \frac{x - m}{x - n}$, where $m \ne n$. Then,

(a) f is one-one onto

(b) f is one-one into

(c) f is many-one onto

(d) f is many-one into

10. If f(x + 2y, x - 2y) = xy, then f(x, y) equals

(a)
$$\frac{x^2 - y^2}{8}$$
 (b) $\frac{x^2 - y^2}{4}$

(b)
$$\frac{x^2 - y^2}{4}$$

(c)
$$\frac{x^2 + y^2}{4}$$

(d)
$$\frac{x^2 - y^2}{2}$$

Answers

Exercise for Session 3

1. (b) 2. (c) 3. (b) 4. (b) 5. (b) 6. (b) 7. (d) 8. (b) 9. (b) 10. (a)