Fobabilit

Chapter: Tifteen

Probability

Competency Based Questions

♦ Multiple Choice Questions

- 1. The probability of getting exactly one head in tossing a pair of coins is

(a) 0 (b) 1 (c) $\frac{1}{3}$ (d) $\frac{1}{2}$

Explanation: S = [HH, HT, TH, TT] = 4

- \therefore P(exactly 1 head) = $\frac{2}{4} = \frac{1}{2}$
- 2. The probability of getting a spade card from a well shuffled deck of 52 cards is
 - (a) $\frac{1}{13}$ (b) $\frac{1}{4}$ (c) $\frac{12}{13}$ (d) $\frac{3}{4}$

Ans. (b) $\frac{1}{4}$

Explanation: Total cards = 52,

Spade cards = 13:. P(a spade card) = $\frac{13}{52} = \frac{1}{4}$

- 3. The probability of getting less than 3 in a single throw of a die is

- (a) $\frac{1}{3}$ (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $\frac{2}{3}$

Ans. (a) $\frac{1}{2}$

Explanation: Here $S = 6^1 = 6$ and E = (less than 3) = [1, 2] = 2

- $\therefore P(Less than 3) = \frac{2}{6} = \frac{1}{3}$
- 4. The total number of events of throwing 10 coins simultaneously is
- (a) 1024
- (b) 512
- (c) 100
- (d) 10

Ans. (a) 1024

Explanation: Total events = 2^{10} = 1024

5. Which of the following can be the probability of an event?

(a) - 0.4 (b) 1.004 (c) $\frac{18}{23}$ (d) $\frac{10}{7}$ Ans. (c) $\frac{18}{23}$

Explanation: Event can neither be a -ve, nor it can be >1.

- 6. Three coins are tossed simultaneously. The probability of getting all heads is

(a) 1 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $\frac{1}{8}$

Explanation: Here S = [HHH, HHT, HTH, THH, HTT,THT, TTH, TTT] = 8

- \therefore P(all heads) = $\frac{1}{8}$
- 7. One card is drawn from a well shuffled deck of 52 cards. The probability of getting a king of red colour is
 - (a) $\frac{1}{26}$ (b) $\frac{1}{13}$ (c) $\frac{1}{4}$ (d) $\frac{1}{2}$

Ans. (a) $\frac{1}{26}$

Explanation: Total cards = 52

- \therefore Total events n(S) = 52 and A king of red colour = 2
- \therefore P(a king of red colour) = $\frac{2}{52} = \frac{1}{26}$
- 8. One card is drawn from a well shuffled deck of 52 playing cards. The probability of getting a non-face card is
 - (a) $\frac{3}{13}$
- (b) $\frac{10}{13}$ (c) $\frac{7}{13}$ (d) $\frac{4}{13}$

Ans. (b) $\frac{10}{13}$

Explanation: Total cards = 52, Total Face cards = 12

- :. Non-face cards = 52 12 = 40
- $\therefore P(a \text{ non-face card}) = \frac{40}{52} = \frac{10}{13}$

	The chance of throwing 5 with an ordinary die is (a) $\frac{1}{6}$ (b) $\frac{5}{6}$ (c) $\frac{1}{3}$ (d) $\frac{1}{2}$	Ans.	(b) $\frac{1}{52}$	
	0 0 2		Explanation: Total cards = 52, A seven of spade = 1	
Ans.	(a) $\frac{1}{6}$		$\therefore P(a \text{ seven of spade}) = \frac{1}{52}$	
	Explanation: Here $S = [1, 2, 3, 4, 5, 6]$:: $n(S) = 6$:: $C(throwings) = \frac{1}{6}$	16.	A bag contains 3 red balls and 5 black balls. A ball is drawn at random from the bag. The	
10	The letters of the word SOCIETY are placed at		probability that a red ball drawn is	
10.	random in a row. The probability of getting a vowel is		(a) $\frac{3}{8}$ (b) $\frac{1}{2}$ (c) $\frac{5}{8}$ (d) $\frac{3}{4}$	
	(a) $\frac{1}{7}$ (b) $\frac{2}{7}$ (c) $\frac{3}{7}$ (d) $\frac{4}{7}$	Ans.	(a) $\frac{3}{8}$	•
A	2		Explanation: Total balls = $3 + 5 = 8$	
Ans.	(c) $\frac{3}{7}$ Explanation: Total letters = 7: No. of yoursis = Ω E = 3		Here, Total events = 8 : P(a red ball) = $\frac{3}{8}$	
	Explanation: Total letters = 7; No. of vowels = O, I, E = 3 \therefore P(a vowel) = $\frac{3}{7}$	17.	A child has a die whose six faces show the letters as given below. The die is thrown once.	3
11.	Cards bearing numbers 3 to 20 are placed in a		A B C D E F	T
	bag and mixed thoroughly. A card is taken out from the bag at random. The probability that		The probability of getting a 'D' is	
	the number on the card taken out is an even number, is		(a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) $\frac{1}{6}$	_
	(a) $\frac{1}{20}$ (b) $\frac{1}{4}$ (c) $\frac{1}{3}$ (d) $\frac{1}{2}$		(d) $\frac{1}{6}$	-
Ans.	(d) $\frac{1}{2}$		Explanation: Sample Space, $S = [A, B, C, D, E, F] = 6$	П
	Explanation: Total cards = 18		$\therefore n(S) = 6 \qquad \therefore P(getting D) = \frac{1}{6}$	
	Cards with even no. are 4, 6, 8, 10, 12, 14, 16, 18, 20 = 9	18.	One card is drawn from a well-shuffled deck of 52 cards. The probability that the card will not	
	$\therefore P(\text{even number}) = \frac{9}{18} = \frac{1}{2}$		be an ace is	
12.	The total events to throw three dice		(a) $\frac{1}{13}$ (b) $\frac{4}{13}$ (c) $\frac{12}{13}$ (d) $\frac{3}{13}$	10.00
	simultaneously is (a) 6 (b) 18 (c) 81 (d) 216	Ans.	(c) $\frac{12}{13}$	
Ans.	(d) 216		Explanation: Total cards = 52; No. of ace cards = 4	
13.	Explanation: Total cards = $(6)^3$ = 216 The probability of getting a consonant from the		:. Non-ace cards = $52 - 4 = 48$ 48 12	
	word MAHIR is		:. P(not an ace) = $\frac{48}{52} = \frac{12}{13}$	
	(a) $\frac{2}{5}$ (b) $\frac{3}{5}$ (c) $\frac{4}{5}$ (d) 1	19.	A lot consists of 144 ball pens of which 20 ae defective and the others are good. Tanu will	I
Ans.	(b) $\frac{3}{5}$		buy a pen if it is good but will not buy if it	
	Explanation: Total characters in MAHIR = 5		is defective. The shopkeeper draws one pen at random and gives it to her. The probability that	
	Consonants are M, H, R i.e., 3		she will buy that pen is	
1/	$\therefore P(\text{getting a consonant}) = \frac{3}{5}$ A girl calculates that the probability of her winning		(a) $\frac{5}{36}$ (b) $\frac{20}{36}$ (c) $\frac{31}{36}$ (d) $\frac{31}{144}$	
14.	A girl calculates that the probability of her winning the first prize in a lottery is 8/100. If 6,000 tickets	ÇÎN 4-19		
	are sold, how many tickets has she bought?	Ans.	(c) $\frac{31}{36}$	
	(a) 400 (b) 750 (c) 480 (d) 240		Explanation: Total pens = 144; Defective pens = 20	

Now, Good ball pens = 144 - 20 = 124

which is a multiple of 5 is

∴ P(she will buy a pen) = P(good ball pen) = $\frac{124}{144} = \frac{31}{36}$

containing tickets numbered from 1 to 40. The

probability that the selected ticket has a number

20. A ticket is drawn at random from a bag

Ans. (c) 480

Explanation: No. of tickets sold = $\frac{8}{100}$ × 6000 = **480**

15. A card is drawn from a well shuffled deck of 52

cards. The probability of a seven of spade is

(a) $\frac{1}{26}$ (b) $\frac{1}{52}$ (c) $\frac{3}{52}$ (d) $\frac{1}{13}$

(b) $\frac{1}{5}$ (c) $\frac{1}{3}$ (d) $\frac{4}{5}$ Ans. (b)

Explanation: Total number = 40

No. of favourable events are 5, 10, 15, 20, 25, 30, 35, 40 = 8

 \therefore Probability (multiple of 5) = $\frac{8}{40} = \frac{1}{5}$

♦ Assertion-Reason Questions

Direction: In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as:

- (a) Both Assertion (A) & Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) & Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true but Reason (R) is false.
- (d) Assetion (A) is false but Reason (R) is true.
 - **1. Assertion:** The probability of winning a game is 0.4, then the probability of losing it, is 0.6. **Reason:** P(E) + P(not E) = 1

Ans. (a) Both A and R are true and R is the correct explanation of A.

Explanation: Given. $P(E) = 0.4 \dots where [E = event of winning]$ \therefore P(Not E) = 1 - P(E) = 1 - 0.4 = 0.6

2. Assertion: The probability of getting a prime number when a die is thrown once is 2/3.

Reason: Prime numbers on a die are 2, 3, 5.

Ans. (d) Assetion (A) is false but Reason (R) is true. **Explanation: Given.** Total outcomes = 6 and prime numbers = $\{2, 3, 5\} = 3$. \therefore P(Prime number) = $\frac{3}{6} = \frac{1}{2}$

3. Assertion: If a die is thrown, the probability of getting

a number less than 3 & greater than 2 is zero. **Reason:** Probability of an impossible event is zero.

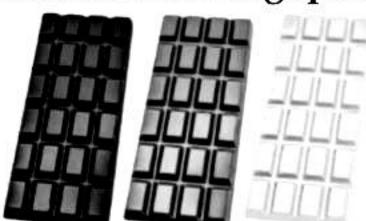
Ans. (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

Explanation: Both statements are correct. Event given in Assertion is an impossible event.

4. Assertion: Card numbered as 1, 2, 3 15 are put in a box and mixed thoroughly, one card is then drawn at random. The probability of drawing an even number is $\frac{7}{15}$.

Reason: For any event E, we have $0 \le P(E) \le 1$.

Ans. (c) Assertion (A) is true but Reason (R) is false. **Explanation:** For any event E, we have, $0 \le P(E) \le 1$.


5. Assertion: If a box contains 5 white, 2 red and 4 black marbles, then the probability of not drawing a white marble from the box is 5/11.

Reason: $P(\overline{E}) = 1 - P(E)$, where E is any event. Ans. (d) Assetion (A) is false but Reason (R) is true.

Explanation: P(white marble) = $\frac{Possible\ outcomes}{Total\ outcomes} = \frac{5}{5+2+4} = \frac{5}{11}$:. P(not white marble) = $1 - \frac{5}{11} = \frac{11 - 5}{11} = \frac{6}{11}$

♦ Case Based Questions

I. Rohit wants to distribute chocolates in his class on his birthday. The chocolates are of three types: Milk chocolate, White chocolate and Dark chocolate. If the total number of students in the class is 54 and everyone gets a chocolate, then answer the following questions:

(i) If the probability of distributing milk chocolates is $\frac{1}{3}$, then the number of milk chocolates Rohit has, is

(a) 18

(b) 20 (d) 30 (c) 22

Ans. (a) 18 **Explanation:** Since, every student gets one chocolate. So, number of chocolates Rohit has is equal to the Number of students in the class i.e., 54 Let number of milk chocolates Rohit has = x

Probability (milk chocolates) = $\frac{1}{2}$

$$\Rightarrow \frac{x}{54} = \frac{1}{3} \qquad \Rightarrow x = \frac{54}{3} = 18$$

(ii) If the probability of distributing dark chocolates is $\frac{4}{9}$, then the number of dark chocolates Rohit has, is

(a) 18

(b) 25

(c) 24

(d) 36

Ans. (c) 24

Explanation: Let number of dark chocolates Rohit has = y

P(dark chocolates) = $\frac{4}{9}$ \Rightarrow $\frac{y}{54} = \frac{4}{9} = 24$

(iii) The probability of distributing white chocolates is

a)
$$\frac{11}{27}$$
 (b) $\frac{8}{21}$ (c) $\frac{1}{9}$

(c)
$$\frac{1}{9}$$

(d)
$$\frac{2}{9}$$

Ans. (*d*) $\frac{2}{9}$

Explanation: No. of white chocolates = 54 - (18 + 24) = 12

 $\therefore \text{ Required probability} = \frac{12}{54} = \frac{2}{9}$

(iv) The probability of distributing both milk and white chocolates is

(a)
$$\frac{3}{17}$$
 (b) $\frac{5}{9}$ (c) $\frac{1}{3}$ (d) $\frac{1}{27}$

Ans. (b) $\frac{5}{9}$

Explanation: Total no. of milk & white choc. = 18 + 12 = 30

 \therefore Required probability = $\frac{30}{54} = \frac{5}{9}$

- (v) The probability of distributing all the chocolates is
- (a) 0 (b) 1 (c) $\frac{1}{2}$ (d) $\frac{3}{4}$

Ans. (b) 1

Explanation: Since every students get one chocolate each.

- \therefore Required probability = $\frac{54}{54}$ = 1
- II. In a party, some children decided to play a game of musical chairs. In the game the person playing the music has been advised to stop the music at any time in the interval of 3 minutes after he starts

the music in each turn. On the basis of the given information, answer the following questions.

- (i) What is the probability that the music will stop within first 30 seconds after starting?
- (a) $\frac{1}{6}$ (b) $\frac{1}{5}$ (c) $\frac{1}{4}$ (d) $\frac{1}{3}$

Ans. (a) $\frac{1}{6}$

Explanation: Total time = $3 \text{ mins} = 3 \times 60 \text{ secs} = 180 \text{ secs}$

- ∴ Required probability = $\frac{30}{180} = \frac{1}{6}$
- (ii) The probability that the music will stop within 45 seconds after starting is
 - (a) $\frac{1}{4}$ (b) $\frac{1}{5}$ (c) $\frac{1}{6}$ (d) $\frac{1}{8}$

Ans. (a) $\frac{1}{4}$

Explanation: Required probability = $\frac{45}{180} = \frac{1}{4}$

- (iii) The probability that the music will stop after 2 minutes after starting is

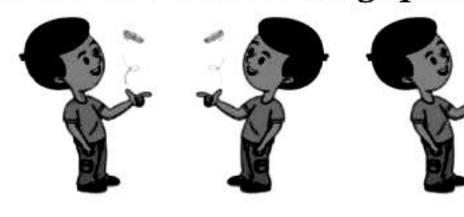
 - (a) $\frac{1}{8}$ (b) $\frac{1}{5}$ (c) $\frac{1}{4}$ (d) $\frac{1}{3}$

Ans. (*d*) $\frac{1}{3}$

Explanation: Required probability = $\frac{120}{180} = \frac{2}{3}$

- \therefore P(music will stop after 2 minutes) = $1 \frac{2}{3} = \frac{1}{3}$
- (iv) The probability that the music will not stop within first 60 seconds after starting is
- (b) $\frac{2}{3}$ (c) $\frac{4}{5}$ (d) $\frac{8}{9}$

Ans. (b) $\frac{2}{3}$


Explanation: Required Probability = $1 - \frac{60}{180} = 1 - \frac{1}{3} = \frac{2}{3}$

- (v) The probability that the music will stop within first 82 seconds after starting is
 - (a) $\frac{11}{30}$ (b) $\frac{41}{90}$ (c) $\frac{31}{45}$ (d) $\frac{82}{90}$

Ans. (b) $\frac{41}{90}$

Explanation: Required probability = $\frac{82}{180} = \frac{41}{90}$

III. Three persons toss 3 coins simultaneously and note the outcomes. 'Then, they ask few questions to one another. Help them in finding the answer of the following questions:

- (i) The probability of getting at most one tail is

- (a) 0 (b) 1 (c) $\frac{1}{2}$ (d) $\frac{1}{4}$

Ans. (c) $\frac{1}{2}$

Explanation: Total number of events = {HHH, HHT, HTT, TTH, THH, HTH, THT, TTT $} = 8$

Let A be the event of getting atmost one tail, \therefore A = {HHH, HHT, HTH, THH}

 $\Rightarrow n(A) = 4$:. Required probability = $\frac{4}{8} = \frac{1}{2}$

- (ii) The probability of getting exactly 1 head is
 - (a) $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) $\frac{1}{8}$ (d) $\frac{3}{8}$

Ans. (d) $\frac{3}{8}$

Explanation: Let B be the event of getting exactly 1 head.

 \therefore B = {HTT, THT, TTH}

 $\Rightarrow n(B) = 3$:. Required probability = $\frac{3}{8}$

- (iii) The probability of getting exactly 3 tails is

- (a) 0 (b) 1 (c) $\frac{1}{4}$ (d) $\frac{1}{8}$

Ans. (d) $\frac{1}{8}$

Explanation: C = exactly 3 tails = {TTT} $\Rightarrow n(C) = 1$

- \therefore Required Probability = $\frac{1}{8}$
- (iv) The probability of getting atmost 3 heads is
 - (a) 0 (b) 1 (c) $\frac{1}{2}$ (d) $\frac{1}{8}$

Ans. (b) 1

Explanation: $D = (atmost 3 heads) = {HHH, HHT,}$ HTH, HTT, THH, THT, TTH, TTT} i.e., 8

- \therefore Required Probability = $\frac{8}{8}$ = 1
- (v) The probability of getting atleast two heads is

- (b) 1 (c) $\frac{1}{2}$

Ans. (c) $\frac{1}{2}$

Explanation: $E = \{HHT, HTH, THH, HHH\}$ *i.e.*, 4

 \therefore Required probability = $\frac{n(E)}{n(S)} = \frac{4}{8} = \frac{1}{2}$