Self Studies

Chemistry Test - 41

Result Self Studies

Chemistry Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Chlorobenzene is prepared commercially by-

    Solution

  • Question 2
    1 / -0
    Which one of the following cannot be prepared from B2H6 ?
    Solution
    \(B_{2} H_{6}+3 O_{2} \rightarrow B_{2} O_{3}+3 H_{2} O+\) Heat
    \(B_{2} H_{6}+6 H_{2} O \rightarrow H_{3} B O_{3}+6 H_{2}\)
    \(2 N a H+B_{2} H_{6} \rightarrow\) ether \(N a B H_{4}\)
    From \(B_{2} H_{6}\), all can be prepared except \(B_{2}\left(C H_{3}\right)_{6}\)
    Hene option C is the correct answer.
  • Question 3
    1 / -0

    The electron energy in hydrogen atom is given by\(\mathrm{E}_{\mathrm{n}}=-\frac{21 \cdot 7 \times 10^{-12}}{\mathrm{n}^{2}} \mathrm{erg}\). Calculate the energy required to remove an electron completely from the n = 2 orbit. What is the longest wavelength (in cm) of light that can be used to cause this transition?

    Solution
    As the electron is to be ejected from the atom, the final state will have 0 energy as \(n_{2}\) tends to infinity. Hence, the amount of energy required for \(t\)
    \(\Delta E=21.7 \times 10^{-12}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \operatorname{erg}\)
    \(=\frac{21.7}{4} \times 10^{-12} \mathrm{erg}\)
    \(=5.425 \times 10^{-12} \mathrm{erg}\)
    1 erg \(=10^{-7}\) joule
    The longest wavelength that can cause above transition can be determined as :
    \(\begin{aligned} \lambda &=\frac{h c}{\Delta E}=\frac{6.625 \times 10^{-34} \times 3 \times 10^{8}}{5.425 \times 10^{-12} \times 10^{-7}} \\ &=3.66 \times 10^{-7} \mathrm{m}=3.6 \times 10^{-5} \mathrm{cm} \end{aligned}\)
    Concepts :
    Main Concept :
    Bohr's ModelBohr Model:
    Niels Bohr applied classical mechanics, electromagnetism and Planck’s quantum theory to modify the Rutherford’s model and proposed his atomic model in 1913. His model gives satisfactory explanation of stable atomic structure and emission of line spectra by hydrogen atom. He presented his theory in the form of 3 postulates.
    Hence, the correct option is (A)
  • Question 4
    1 / -0
    Metal \((\mathrm{M})+\operatorname{air} \stackrel{\Delta}{\longrightarrow}(\mathrm{A}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{\longrightarrow}(\mathrm{B}) \stackrel{\mathrm{HCl}}{\longrightarrow}\) White fumes. Metal (M) can be
    Solution
    Reaction is:
    \(M g+\operatorname{air} \stackrel{\Delta}{\longrightarrow} M g_{3} N_{2} \stackrel{H_{2} O}{\longrightarrow} M g(O H)_{2}+N H_{3} \stackrel{H C l}{\longrightarrow} N H_{4} C l\)
    In the same way, aluminium and Lithium reacts to form nitrides
    Sodium, Potassium do not react with nitrogen to form nitrides.
    Hence, the correct option is (A)
  • Question 5
    1 / -0
    Titration of I2 produced from 0.1045 g of primary standard KIO3 required 30.72 mL of sodium thiosulphate as shown below :

    \(\mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} \longrightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}\)

    \(\mathrm{I}_{2}+2 \mathrm{S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}\)

    The molarity of sodium thiosulphate ion is :
    Solution
    For every 1 mole of 13 you require 2 moles of \(S_{2}0_{3}\)
    Thus, for every 1 mole of\(\mathrm{KIO}_3\) that are present you require 6 moles of \(\mathrm{Na} _2 \mathrm{S}_2 \mathrm{O}_3\)
    So, lets start by converting \(0.1045 g\) of \(\mathrm{KIO}_3\) to moles:
    \(0.1045 g \times \frac{1 \mathrm{mol}}{214 \mathrm{g}}=4.88 \times 10^{-4} \mathrm{moles}\)
    Next, we multiply this by 6 to determine the required number of moles of \(\mathrm{Na}_2 \mathrm{S}_2 \mathrm{O}_3\) :
    \(4.88 \times 10^{-4} \cdot 6=0.0029 \mathrm{moles}\)
    Finally, we divide 0.0029 moles of \(\mathrm{Na}_2 \mathrm{S}_2 \mathrm{O}_3\) by the volume (in Liters) to get the final
    concentration:
    \(\frac{0.0029 \mathrm{moles}}{0.03072 L}=0.095 \mathrm{Molar}\)
    Hence, the correct option is (A)
  • Question 6
    1 / -0
    What is the pH of 0.01 M glycine solution?
    [For glycine, \(\boldsymbol{K}_{a_{1}}=4.5 \times 10^{-3}\) and \(\boldsymbol{K}_{a_{2}}=1.72 \times 10^{-10}\) at \(\left.298 \mathrm{k}\right]\)
    Solution
    For glycine solution:
    \(K=K_{a_{1}} \times K_{a_{2}}=4.5 \times 10^{-3} \times 1.72 \times 10^{-10}=7.74 \times 10^{-13}\)
    \(\left[H^{+}\right]=\sqrt{K \cdot C}\)
    \(=\sqrt{7.74 \times 10^{-13} \times 0.01}=8.79 \times 10^{-8}\)
    Hence, \(p H=-\log \left[H^{+}\right]\)
    \(=-\log \left[8.79 \times 10^{-8}\right]\)
    \(=-\left(\log 10^{-8}+\log 8.7\right)\)
    \(=8-0.93=7.07 \approx 7.1\)
    Hence, the correct option is (C)
  • Question 7
    1 / -0
    An element has fcc structure with edge length 200 pm, calculate the density if 200g of this element contains 24 × 1023 atoms. (N=  6 × 1023​)
    Solution

    \(\because 24 \times 10^{23}\) atoms weigh \(200 \mathrm{g}\)

    \(\therefore \quad 6 \times 10^{23} \quad\) (Avogadro number) of atoms will weigh \(=50 \mathrm{g} / \mathrm{mole}\)

    \(\Rightarrow \quad d=\frac{N M}{N a}: N=\) Number of atoms per unit cell \(=4\) for \(\mathrm{FCC}\)

    \(a=\) edge length \(=200 \mathrm{pm}=2 \times 10^{-8} \mathrm{cm} \cdot a^{3}=8 \times 10^{-24}\)

    \(\begin{aligned} d=\frac{4 \times 50}{6 \times 10^{23} \times 8 \times 10^{-24}} \mathrm{g} / \mathrm{cm}^{3} \\=& 41.67 \mathrm{g} / \mathrm{cm}^{3} \end{aligned}\)

    Hence, the correct option is (B)

  • Question 8
    1 / -0
    The treatment of \(C H_{3} M g X\) with \(C H_{3} C \equiv C-H\) produces:
    Solution
    The treatment of \(C H_{3} M g X\) (grignard reagent) with \(C H_{3} C \equiv C-H\) (alkyne) produces \(C H_{4}\)(methane).
    \(
    C H_{3} M g X+C H_{3} C \equiv C-H \rightarrow C H_{3} C \equiv C-M g X+C H_{4}
    \)
    Note: This reaction is used for the alkylation of terminal alkynes.
    Hence, the correct option is (C)
  • Question 9
    1 / -0
    A 50 litre vessel is equally divided into three parts with the help of two stationary semi permeable membrane (SPM). The vessel contains 60 g H2  gas in the left chamber, 160 g O2 in the middle and 140 g N2 in the right one. The left SPM allows transfer of only H2  gas while the right one allows the transfer of both H2 and N2 . The final ratio of pressure in the three chambers.
    Solution
    \(\begin{array}{lccc}\text { Intial } & \text { 30 } & \text { 5 } & \text { 5 } \\ \text { Moles } & \text { Moles } & \text { Moles } & \text { Moles }\end{array}\)
    \(\begin{array}{lccc}\text { Final moles }\left(\mathrm{H}_{2}\right) & 10 & 10 & 10 \\ \text { Final moles }\left(\mathrm{O}_{2}\right) & 0 & 5 & 0 \\ \text { Final moles }\left(\mathrm{N}_{2}\right) & 0 & 2 \cdot 5 & 2 \cdot 5 \\ \text { Total moles } & 10 & 17 \cdot 5 & 12 \cdot 5\end{array}\)
    Ratio is 4:7:5
    Hence, the correct option is (A)
  • Question 10
    1 / -0

    A compound that gives a positive iodoform test is:

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now