Self Studies

Mathematics Test - 1

Result Self Studies

Mathematics Test - 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have at least one letter repeated is
    Solution

    The total number of words that can be formed is 105 and number of these words in which no letters are repeated is 10P5.

    Hence the required number,

    = 10510P5

    = 100000 − 10 × 9 × 8 × 7 × 6
    = 69760

    Hence option A is correct.

  • Question 2
    1 / -0
    The tangent to the circle x2 + y2 = 5 at (1, − 2) also touches the circle x2 + y2 − 8x + 6y + 20 = 0. Then the point of contact is
    Solution
    Tangent at (1,-2) to \(x^{2}+y^{2}=5\) is \(x-2 y-5=0 \ldots(i)\)
    Centre and radius of \(x^{2}+y^{2}-8 x+6 y+20=0\) are
    \(C (4,-3)\) and radius \(r=\sqrt{5}\)
    Perpendicular distance from \(C(4,-3)\) to \((i)\) is radius.
    \(\therefore\) (i) is also a tangent to the second circle.
    Let \(P ( h , k )\) be the foot of the drawn circle from \(C (4,-3)\) on \(( i )\) \(\frac{h-4}{1}=\frac{k+3}{-2}=-\frac{[1 \cdot 4-2 \cdot(-3)-5]}{1^{2}+2^{2}}\)
    \(\therefore(h, k)=(3,-1)\)
    Hence option B is correct.
  • Question 3
    1 / -0
    Events \(A , B , C\) are mutually exclusive events such that \(P(A)=\frac{3 x+1}{3}, P(B)=\frac{1-x}{4},\) and \(P(C)=\frac{1-2 x}{2}\)
    Then set of possible values of \(x\) are in the interval:
    Solution
    \(0 \leq \frac{3 x+1}{3} \leq 1,0 \leq \frac{1-x}{4} \leq 1,0 \leq \frac{1-2 x}{2} \leq 1\)
    and \(0 \leq \frac{3 x+1}{3}+\frac{1-x}{4}+\frac{1-2 x}{2} \leq 1\)
    Considering the four inequalities \(-\frac{1}{3} \leq x \leq \frac{2}{3},-3 \leq x \leq 1,-\frac{1}{2} \leq x \leq \frac{1}{2}\)
    and \(\frac{1}{3} \leq x \leq \frac{13}{3},\) hence \(\frac{1}{3} \leq x \leq \frac{1}{2}\)
    Hence option D is correct.
  • Question 4
    1 / -0
    Given vectors \(\overrightarrow{ x }=3 \widehat{ i }-6 \widehat{ j }-\widehat{ k }, \overrightarrow{ y }=\widehat{ i }+4 \widehat{ j }-3 \widehat{ k }\) and \(\vec{z}=3 \widehat{ i }-4 \widehat{ j }-12 \widehat{ k }\) then the projection of \(\overrightarrow{ x } \times \overrightarrow{ y }\) on \(\overrightarrow{ z }\) is
    Solution
    The projection of \(\frac{(\overrightarrow{ x } \times \overrightarrow{ y }) \cdot \overrightarrow{ z }}{|\overrightarrow{ z }|}\)
    \(=\frac{[\overrightarrow{ x } \overrightarrow{ y } \overrightarrow{ z }]}{|\overrightarrow{ z }|}\)
    \(=\frac{1}{13}\left|\begin{array}{ccc}3 & -6 & -1 \\ 1 & 4 & -3 \\ 3 & -4 & -12\end{array}\right|\)
    \begin{equation}\begin{array}{l}
    =\frac{1}{13}(3(-48-12)+6(-12+9)-(-4-12)) \\
    =\frac{1}{13}(-180-18+16) \\
    =\frac{1}{13}(-182) \\
    =-14
    \end{array}\end{equation}
    Hence option B is correct.
  • Question 5
    1 / -0
    The plane through the intersection of the planes \(x+y+z=1\) and \(2 x+3 y-z+4=0\) and parallel to \(y\) -axis also passes through the point.
    Solution
    Equation of plane
    \((x+y+z-1)+\lambda(2 x+3 y-z+4)=0\)
    \(\Rightarrow(1+2 \lambda) x+(1+3 \lambda) y+(1-\lambda) z-1+4 \lambda=0\)
    dr's of normal of the plane are
    \(1+2 \lambda, 1+3 \lambda, 1-\lambda\)
    Since plane is parallel to y-axis,
    \(1+3 \lambda=0\)
    \(\Rightarrow \lambda=\frac{-1}{3}\)
    So the equation of plane is
    \(x+4 z-y=0\)
    Point (3,2,1) satisfies this equation
    Hence option C is correct.
  • Question 6
    1 / -0
    f \(\int_{-1}^{-4} f(x) d x=4\) and \(\int_{2}^{-4}(3-f(x)) d x=7,\) then the value of \(\int_{-2}^{1} f(-x) d x\) is
    Solution
    \begin{equation}\begin{array}{l}
    \int_{2}^{-4}(3-f(x)) d x=7 \\
    \Rightarrow \int_{2}^{-4} 3 d x-\int_{2}^{-4}(f(x)) d x=7 \\
    \Rightarrow[3 x]_{2}^{-4}-\int_{2}^{-4}(f(x)) d x=7 \\
    \Rightarrow \int_{2}^{-4}(f(x)) d x=-25 \ldots \ldots \ldots \ldots \ldots(i) \\
    \text { and } \int_{-1}^{-4}(f(x)) d x=4 \\
    \Rightarrow \int_{-4}^{-1}(f(x)) d x=-4 \ldots \ldots \ldots \ldots(i i)
    \end{array}\end{equation}now we can write
    \(\int_{-4}^{2}(f(x)) d x=\int_{-4}^{-1}(f(x)) d x+\int_{-1}^{2}(f(x)) d x\)
    \(\Rightarrow 25=-4+\int_{-1}^{2}(f(x)) d x\)
    \(\Rightarrow \int_{-1}^{2}(f(x)) d x=29 \ldots \ldots \ldots \ldots \ldots(i i i)\)
    \(N o w\)
    \(I=\int_{-2}^{1}(f(-x)) d x\)
    let \(x=-t\)
    \(d x=-d t\)
    when \(x=-2, t=2\)
    and when \(x=1, t=-1\)
    so \(I=\int_{-2}^{1}(f(-x)) d x=\int_{2}^{-1}-(f(t)) d t\)
    \(\Rightarrow I=\int_{-1}^{2}(f(t)) d t\)
    \(\Rightarrow I=\int_{-1}^{2}(f(x)) d x\)
    \(\Rightarrow I=29\) ( from equation (iii))
    Hence option D is correct.
  • Question 7
    1 / -0
    \begin{equation}\operatorname{lf} g[f(x)]=|\sin x| \text { and } f[g(x)]=(\sin \sqrt{x})^{2} \text { then, }\end{equation}
    Solution
    Given \((g \circ f)(x)=|\sin x| \ldots \ldots \ldots \ldots .(1)\)
    and, \(f[g(x)]=(\sin \sqrt{x})^{2}\)
    \((f \circ g)(x)=(\sin \sqrt{x})^{2}\)
    For option \((A), f(x)=\sin ^{2} x, g(x)=\sqrt{x}\)
    \((f \circ g)(x)=f[g(x)]=f(\sqrt{x})\)
    \(\Rightarrow(f \circ g)(x)=f(y)=\sin ^{2} y=\sin ^{2}(\sqrt{x})\)
    \(y=\sqrt{x}\)
    \((g \circ f)(x)=g[f(x)]=g\left(\sin ^{2} x\right)=g(t) t=\sin ^{2} x\)
    \(\Rightarrow \sqrt{t}=\sqrt{\sin ^{2} x}=|\sin x|\)
    Hence option A is correct.
  • Question 8
    1 / -0
    \begin{equation}\text { The distance between the line } \vec{r}=2 \vec{i}-2 \vec{j}+3 \vec{k}+\lambda(\vec{i}-\vec{j}+4 \vec{k}) \text { and the Plane } \vec{r} .(\vec{i}+5 \vec{j}+\vec{k})=5 \text { is }\end{equation}
    Solution
    The line is parallel to plane because \((\hat{i}-\hat{j}+4 \hat{k}) \cdot(\hat{i}+5 \hat{j}+\hat{k})=0\)
    General point on the line is \((\lambda+2,-\lambda-2,4 \lambda+3)\) for \(\lambda=0\) (because at \(\lambda=0,\) the distance of the line is minimum from the plane, a point on this line is (2,-2,3) and distance from \(\overrightarrow{ r } \cdot(\widehat{ i }+5 \widehat{ j }+\widehat{ k })=5\)
    or \(x+5 y+z=5\) is
    \(d=\frac{|2+5(-2)+3-5|}{\sqrt{1+25+1}}\)
    \(\Rightarrow d=\frac{|-10|}{3 \sqrt{3}}=\frac{10}{3 \sqrt{3}}\)
    Hence option C is correct.
  • Question 9
    1 / -0
    If \(g ( x )\) satisfies the conditions of Rolle's theorem in [1,2] and \(g ^{\prime}( x )= f ( x ),\) then \(\int_{1}^{2} f(x) d x\) is equal to
    Solution
    As \(g ( x )\) satisfies the condition of Rolle's theorem in \([1,2], g ( x )\) is continuous in the interval and \(g(1)=g(2)\)
    \(n o w\)
    \(g^{\prime}(x)=f(x)\)
    \(\left.\therefore \int_{1}^{2} f(x) d x=g(x)\right]_{1}^{2}\)
    \(=g(2)-g(1)=0\)
    Hence option C is correct.
  • Question 10
    1 / -0
    Which of the following is logically equivalent to (p q) ?
    Solution
    pq~p~q~p⇒q ~(~p⇒q)∧ q
     p ∼ q
    ∼p ∧ q
    ∼p ∼q
    FFTTFTFFFT
    FTTFTFFFTF
    TFFTTFFTFF
    TTFFTFTFFF

    The values in column 6 and column 10 are same.
    Hence option D is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now