Self Studies

Mathematics Test - 10

Result Self Studies

Mathematics Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If p,q,r are real and p≠q, then roots of the equation (p−q)x2+5(p+q)x−2(p−q)=0 are:

    Solution

    Discriminant =b2−4ac

    =25(p+q)2+8(p−q)2

    Hence, D≥0

    Hence, roots are real.

    Also p and q are real.

    ∴D≠0

    Hence, roots are not equal.

    Hence option C is the correct answer.

  • Question 2
    1 / -0

    The roots of a2x2+abx=b2,a≠0,b≠0 are:

    Solution
    Here, \(a^{2} x^{2}+a b x=b^{2}, a \neq 0, b \neq 0\)
    \(\Rightarrow a^{2} x^{2}+a b x-b^{2}=0\)
    Now, roots of the quadratic equation \(=\frac{-a b \pm \sqrt{(a b)^{2}-4 a^{2}\left(-b^{2}\right)}}{2 a^{2}}\) \(=\frac{-a b \pm \sqrt{5 a^{2} b^{2}}}{2 a^{2}}\)
    \(=\frac{-a b \pm \sqrt{5} a b}{2 a^{2}}\)
    \(=\frac{-b \pm \sqrt{5} b}{2 a}\)
    Thus, the roots are real and unequal.
    Hence option C is the correct answer.
  • Question 3
    1 / -0

    Each of the following quadratic equations represents the graph shown. Which equation reveals the exact values of the x−intercepts of the graph?

    Solution
    From the graph the roots are \(x=-1, \frac{5}{2},\) Now at \(x=0\) we have \(y=\frac{-5}{2}\)
    \(\Rightarrow y=a\left(x-\frac{5}{2}\right)(x+1)\)
    \(x=0 \Rightarrow y=\frac{-5}{2}=a \frac{-5}{2}(1) \Rightarrow a=1\)
    \(\therefore y=\left(x-\frac{5}{2}\right)(x+1)=\frac{(2 x-5)(x+1)}{2}\)
    Hence option A is the correct answer.
  • Question 4
    1 / -0

    All the values of m for which both the roots of the equation x2−2mx+m2−1=0 are greater than −2 but less than 4 lie in the interval :

    Solution

    The given equation is,

    x2−2mx+m2−1=0

    or (x−m)2−1=0

    or (x−m+1)(x−m−1)=0

    or x=m−1,m+1

    From given condition,

    m−1>−2 and m+1<4

    ⇒m>−1 and m<3

    Hence, −1

    Hence option C is the correct answer.

  • Question 5
    1 / -0

    The graph of y=4x2+3x+7 :

    Solution
    \(y=4 x^{2}+3 x+7\)
    consider \(4 x^{2}+3 x+7=0\)
    \(\Delta=b^{2}-4 a c=9-4(4) 7=-1920\)
    \(\therefore\) the equation has no roots.
    \(\therefore y=0 \Rightarrow\) it doesn't cut the x-axis anywhere and lies above it.
    Hence option B is the correct answer.
  • Question 6
    1 / -0
    If \(\alpha, \beta\) are the roots of \(x^{2}+p x+q=0\) and \(\gamma, \delta\) are the roots of \(x^{2}+p x+r=0\), then \(\frac{(\alpha-\gamma)(\alpha-\delta)}{(\beta-\gamma)(\beta-\delta)}=\)?
    Solution
    since, \(\alpha, \beta\) are the roots of \(x^{2}+p x+q=0\)
    \(\alpha+\beta=-p\) and \(\alpha \beta=q\)
    Also, \(\gamma, \delta\) are roots of \(x^{2}+p x+r=0\)
    \(\gamma+\delta=-p\) and \(\gamma \delta=r\)
    Consider \(\frac{(\alpha-\gamma)(\alpha-\delta)}{(\beta-\gamma)(\beta-\delta)}\)
    \(=\frac{\alpha^{2}-(\gamma+\delta) \alpha+\gamma \delta}{\beta^{2}-(\gamma+\delta) \beta+\gamma \delta}\)
    \(=\frac{\alpha^{2}+p \alpha+r}{\beta^{2}+p \beta+r}\)
    \(=\frac{-q+r}{-q+r}\left(\because \alpha, \beta\right.\) are roots of \(\left.x^{2}+p x+q=0\right)\)
    \(=1\)
    Hence option A is the correct answer.
  • Question 7
    1 / -0
    If \(\alpha, \beta, \gamma\) are the roots of \(x^{3}+p x^{2}+q x+r=0,\) then \(\sum \frac{\beta^{2}+\gamma^{2}}{\beta \gamma}=?\)
    Solution
    As \(\alpha, \beta, \gamma\) are the roots of \(x^{3}+p x^{2}+q x+r=0\)
    Gives
    \(\alpha+\beta+\gamma=-p\)
    \(\alpha \beta+\beta \gamma+\gamma \alpha=q\)
    \(\alpha \beta \gamma=-r\)
    Now \(\sum \frac{\beta^{2}+\gamma^{2}}{\beta \gamma}=\frac{\beta^{2}+\gamma^{2}}{\beta \gamma}+\frac{\alpha^{2}+\gamma^{2}}{\gamma \alpha}+\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}\)
    \(=\frac{\alpha \beta^{2}+\gamma^{2} \alpha+\alpha^{2} \beta+\beta \gamma^{2}+\gamma \alpha^{2}+\beta^{2} \gamma}{\alpha \beta \gamma}\)
    \(=\frac{(\alpha+\beta+\gamma)(\alpha \beta+\beta \gamma+\gamma \alpha)-3 \alpha \beta \gamma}{\alpha \beta \gamma}\)
    \(=\frac{-p q-3(-r)}{-r}=\frac{p q}{r}-3\)
    Hence option C is the correct answer.
  • Question 8
    1 / -0
    The set of possible values of \(\lambda\) for which \(x^{2}-\left(\lambda^{2}-5 \lambda+5\right) x+\left(2 \lambda^{2}-3 \lambda-4\right)=0\) has roots whose sum and product are both less then 1 is:
    Solution
    Let \(\alpha, \beta\) be the roots of the given equation, then \(\alpha+\beta=\lambda^{2}-5 \lambda+5<1\), and \(\alpha \beta=2 \lambda^{2}-3 \lambda-4<1\)
    \(\Rightarrow \lambda^{2}-5 \lambda+4<0\) and \(, 2 \lambda^{2}-3 \lambda-5<0\)
    \(\therefore(\lambda-4)(\lambda-1)<0 \quad\) and \((2 \lambda-5)(\lambda+1)<0\)
    \(1<\lambda<4 \quad\) and \(\quad-1<\lambda<\frac{5}{2}\)
    \(\therefore\) Required set \(=\left(-1, \frac{5}{2}\right) \cap(1,4)=\left(1, \frac{5}{2}\right)\)
    Hence option D is the correct answer.
  • Question 9
    1 / -0

    If α,β,γ are the roots of the equation x3+px2+qx+r=0, then α222=?

    Solution
    As \(\alpha, \beta, \gamma\) are roots of \(x^{3}+p x^{2}+q x+r=0\) Gives
    \(S_{1}=\alpha+\beta+\gamma=-p\)
    \(S_{2}=\alpha \beta+\beta \gamma+\gamma \alpha=q\)
    Now, \(\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)\)
    \(=(-p)^{2}-2 q=p^{2}-2 q\)
    Hence option D is the correct answer.
  • Question 10
    1 / -0

    Let α,β be roots of the equation ax2+bx+c=0 and Δ=b2−4ac. If α+β,α2233 are in GP, then :

    Solution
    since, \(\alpha, \beta\) be roots of the equation \(a x^{2}+b x+c=0\) \(\Rightarrow \alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}\)
    Now, \(\alpha ^{2}+\beta^{2}=( \alpha +\beta)^{2}-2 \alpha \beta\)
    \(\Rightarrow \alpha^{2}+\beta^{2}=\frac{b^{2}-2 a c}{a^{2}}\)
    Also, \(\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)\)
    \(\Rightarrow \alpha^{3}+\beta^{3}=\left(-\frac{b}{a}\right)\left(\frac{b^{2}-3 a c}{a^{2}}\right)\)
    Given, \(\alpha+\beta, \alpha^{2}+\beta^{2}, \alpha^{3}+\beta^{3}\) are in GP
    \(\Rightarrow\left(\alpha^{2}+\beta^{2}\right)^{2}=(\alpha+\beta)\left(\alpha^{3}+\beta^{3}\right)\)
    Put the values from ( 1 ) and ( 2 ), we get \(\Rightarrow\left(b^{2}-2 a c\right)^{2}=b^{2}\left(b^{2}-3 a c\right)\)
    \(\Rightarrow a b^{2} c-4 a^{2} c^{2}=0\)
    \(\Rightarrow a c\left(b^{2}-4 a c\right)=0\)
    since, \(a \neq 0\)
    \(\Rightarrow c . \Delta=0 \quad\) (Given, \(\left.\Delta=b^{2}-4 a c\right)\)
    Hence option C is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now