Self Studies

Mathematics Test - 13

Result Self Studies

Mathematics Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The mean of n terms is \(\bar{x}\). If first term is increased by 1, second term by 2, and so on, then new mean is

    Solution
    Let \(x_{1}, x_{2}, \ldots \ldots \ldots ., x_{n}\) be the n terms.
    \(\therefore \bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}\)
    lew mean \(=\frac{\left(x_{1}+1\right)+\left(x_{2}+2\right)+\ldots+\left(x_{n}+n\right)}{n}\)
    \(=\frac{\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}\right)+(1+2+\ldots+\mathrm{n})}{\mathrm{n}}\)
    \(=\frac{\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}\right)}{\mathrm{n}}+\frac{\mathrm{n}(\mathrm{n}+1) / 2}{\mathrm{n}}=\overline{\mathrm{x}}+\frac{\mathrm{n}+1}{2}\)
  • Question 2
    1 / -0

    Four persons are asked the same question by an interviewer. If each has, independently, a probability 1/6 of answering correctly, then the probability that at least one of them answers correctly is

    Solution
    Let \(\mathrm{E}_{\mathrm{i}}(\mathrm{i}=1,2,3,4)\) denote the event that the \(\mathrm{i}^{\text {th }}\) person answers the question
    correctly.
    \(\mathrm{P}(\) at least one of them answers correctly \()\) \(=\mathrm{P}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2} \cup \mathrm{E}_{3} \cup \mathrm{E}_{4}\right)=1-\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2} \cap \mathrm{E}_{3} \cap \mathrm{E}_{4}\right)\)
    \(=1-\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{E}_{2}^{\prime} \mathrm{P}\left(\mathrm{E}_{3}^{\prime}\right) \mathrm{P}\left(\mathrm{E}_{4}^{\prime}\right)=1-\left(1-\frac{1}{6}\right)^{4}=1-\left(\frac{5}{6}\right)^{4}\right.\)
  • Question 3
    1 / -0

    The integral \(\int \frac{2 x-3}{\left(x^{2}+x+1\right)^{2}} d x\)is equal to

    Solution
    \(\int \frac{2 x-3}{\left(x^{2}+x-1\right)^{2}} d x\)
    \(=\int\left(\frac{2 x+1}{\left(x^{2}+x+1\right)^{2}}-\frac{4}{\left(x^{2}+x+1\right)^{2}}\right) d x\)
    \(=\int \frac{2 x+1}{\left(x^{2}+x+1\right)^{2}} d x-\frac{4}{\left(x^{2}+x+1\right)^{2}} d x\)
    \(=I_{1}-I_{2}\)
    \(u=x^{2}+x+1 \rightarrow d x=\frac{1}{2 x+1} d x\)
    \(I_{1}=\int \frac{1}{u^{2}} d u=-\frac{1}{u}=-\frac{1}{x^{2}+x+1}\)
    \(I_{2}=\int \frac{1}{x^{2}+x+1} d x=\int \frac{1}{\left(\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right)^{2}} d x=16 \int \frac{1}{\left((2 x+1)^{2}+3\right)^{2}} d x\)
    Substitute \(u=2 x+1 \rightarrow d u=\frac{1}{8} d u\)
    \(=\frac{1}{2} \int \frac{1}{\left(u^{2}+3\right)^{2}} d u\)
    \(=\frac{u}{6\left(u^{2}+3\right)}+\frac{1}{6} \int \frac{\sqrt{3}}{3 v^{2}+3} d v\)
    \(=\frac{2 x+1}{12\left((2 x+1)^{2}+3\right)}+\frac{\tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)}{4.3^{3 / 2}}\)
    \(I=I_{1}-I_{2}\)
    \(=\frac{16 x-7}{3\left(x^{2}+x+1\right)}-\frac{16 \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)}{3^{3 / 2}}+c\)
  • Question 4
    1 / -0

    The tangent to the circle x2 + y2 = a2 at the point, where x = 2, makes an angle with the axis of x whose tangent is 2.The area, lying in the first quadrant, bounded by the x-axis, the circle and the line y = 2x is

    Solution

  • Question 5
    1 / -0

    The points of contact of the tangents drawn from the origin to the curve y = sin x lie on the curve

    Solution

    1. Let (h, k) be a point of contact of the tangents drawn from the origin to y = sin x. Then, (h,k) lies on y = sin x..

    k = sin h …(i)

    Now, \(y=\sin x, \frac{d y}{d x}=\cos x\left(\frac{d y}{d x}\right)_{(h, k)}=\cosh\)
    The equation of the tangent at \((h, k)\) is \(y-k=(\cos h)(x-h)\)
    This passes through (0,0) . \(\therefore-k=-h \cosh \frac{k}{h}=\cosh \ldots(i 1)\)
    From (i) and (ii):
    \(k^{2}+\frac{k^{2}}{h^{2}}=1\)
    \(h^{2}-k^{2}=k^{2} h^{2}\)
    Hence, the locus of \((\mathrm{h}, \mathrm{k})\) is \(\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{x}^{2} \mathrm{y}^{2}\)
  • Question 6
    1 / -0

    Let \(3 \mathrm{f}(\mathrm{x})+\) bf \(\left(\frac{1}{\mathrm{x}}\right)=\mathrm{x},(\mathrm{b} \neq\pm 3)\) for all \(\mathrm{x} \in \mathrm{R}-\{0\} .\) If \(\mathrm{x}=2\) is a root of the equation \(\mathrm{f}(\mathrm{x})=0\) then

    Solution
    \(3 f(x)+b f(1 / x)=x\)
    Substituting \(1 / x\) in place of \(x\) \(3 f(1 / x)+b f(x)=1 / x\)
    Above is a system of equation in \(f(x)\) and \(f(1 / x)\). Operating \((i) \times 3-(\) ii \() \times b\) :
    \(\left(9-b^{2}\right) f(x)=3 x-\frac{b}{x} f(x)=\frac{3 x^{2}-b}{x\left(9-b^{2}\right)}\)
    But \(f(2)=0\) \(0=\frac{(12-b)}{2\left(9-b^{2}\right)}\)
    \(b=12\)
  • Question 7
    1 / -0

    The coefficient of xn in the expansion of \(\frac{1}{(1-x)(3-x)}\)is:

    Solution
    \(\frac{1}{(1-x)(3-x)}=\frac{1}{2}\left[\frac{1}{1-x}-\frac{1}{3-x}\right]\)
    \(=\frac{1}{2}\left[(1-x)^{-1}-\frac{1}{3}\left(1-\frac{x}{3}\right)^{-1}\right]\)
    \(=\frac{1}{2}\left[1+x+x^{2}+x^{3}+\ldots+x^{n}+\ldots\right.\)
    \(-\frac{1}{3}\left\{1+\frac{x}{3}+\left(\frac{x}{3}\right)^{2}+\left(\frac{x}{3}\right)^{3}+\ldots\right\}\)
    Sum of coefficient of \(x^{n}\) is \(\frac{1}{2}\left[1-\frac{1}{3} \cdot \frac{1}{3^{n}}\right]=\frac{3^{n+1}-1}{2\left(3^{n+1}\right)}\)
  • Question 8
    1 / -0
    Sum to n terms of the series
    \(1+\frac{x}{a_{1}}+\frac{x\left(x+a_{1}\right)}{a_{1} a_{2}}+\frac{x\left(x+a_{1}\right)\left(x+a_{2}\right)}{a_{1} a_{2} a_{3}}+\ldots\) is
    Solution
    \(1+\frac{x}{a_{1}}+\frac{x\left(x+a_{1}\right)}{a_{1} a_{2}}+\frac{\left.x\left(x+a_{1}\right) x+a_{2}\right)}{a_{1} a_{2} a_{3}}+\ldots=\frac{x+a_{1}}{a_{1}}+\frac{x\left(x+a_{1}\right)}{a_{1} a_{2}}+\frac{x\left(x+a_{1}\right)\left(x+a_{2}\right)}{a_{1} a_{2} a_{3}}+\ldots\)
    \(=\left(\frac{x+a_{1}}{a_{1}}\right)\left[1+\frac{x}{a_{2}}\right]+\frac{x\left(x+a_{1}\right)\left(x+a_{2}\right)}{a_{1} a_{2} a_{3}}+\ldots\)
    \(=\frac{\left.\left(x+a_{1}\right) x+a_{2}\right)}{a_{1} a_{2}}+\frac{x\left(x+a_{1}\right) x+a_{2}}{a_{1} a_{2} a_{3}}+\ldots\)
    \(=\frac{\left.\left(x+a_{1}\right) x+a_{2}\right)}{a_{1} a_{2}}\left[1+\frac{x}{a_{3}}\right]+\ldots\)
    \(=\frac{\left(\mathrm{x}+\mathrm{a}_{1}\right)\left(\mathrm{x}+\mathrm{a}_{2}\right)\left(\mathrm{x}+\mathrm{a}_{3}\right)}{\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}}+\ldots\)
    \(=\frac{\left(\mathrm{x}+\mathrm{a}_{1}\right)\left(\mathrm{x}+\mathrm{a}_{2}\right) \cdot\left(\mathrm{x}+\mathrm{a}_{3}\right) \ldots\left(\mathrm{x}+\mathrm{a}_{\mathrm{n}}\right)}{\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \ldots \ldots \mathrm{a}_{\mathrm{n}}}\)
    \(=\frac{\left.\left(\mathrm{x}+\mathrm{a}_{1}\right) \mathrm{x}+\mathrm{a}_{2}\right) \cdot\left(\mathrm{x}+\mathrm{a}_{3}\right) \ldots\left(\mathrm{x}+\mathrm{a}_{\mathrm{n}}\right)}{\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \ldots \ldots \mathrm{a}_{\mathrm{n}}}\)
  • Question 9
    1 / -0

    If sin y = x sin (a + y), then dy/dx is

    Solution
    Given, \(\sin y=x \sin (a+y)\)
    \(\Rightarrow x=\frac{\sin y}{\sin (a+y)}\)
    On differentiating with respect to \(y\), we get \(\frac{d x}{d y}=\frac{\sin (a+y) \cos y-\sin y \cos (a+y)}{\sin ^{2}(a+y)}\)
    \(=\frac{\sin (a+y-y)}{\sin ^{2}(a+y)}\)
    \(\Rightarrow \frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}\)
  • Question 10
    1 / -0
    \(\int_{0}^{\pi} \frac{1}{1+\sin x} d x\) is equal to
    Solution
    Let \(I=\int_{0}^{\pi} \frac{1}{1+\sin x} d x\)
    \(=\int_{0}^{\pi} \frac{1}{1+\frac{1}{1+\tan ^{2} \frac{x}{2}}} d x\)
    Put \(1+\tan \frac{x}{2}=t \Rightarrow \frac{1}{2} \sec ^{2} \frac{x}{2}=d t\)
    \(=\int_{0}^{\pi} \frac{\sec ^{2} \frac{x}{2}}{\left(1+\tan \frac{x}{2}\right)^{2}} d x\)
    \(\left.\therefore I=\int_{1}^{\infty} \frac{2 d t}{1+t^{2}}=-\frac{2}{t}\right]_{1}^{\infty}=2\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now