Self Studies

Mathematics Test - 15

Result Self Studies

Mathematics Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The function \(f: R \rightarrow[-1,1]\) defined by \(f(x)=\frac{|x|}{1+|x|}, x \in R\) is

    Solution

    \(f(x)=\frac{|x|}{1+|x|}=\left\{\begin{array}{ll}\frac{x}{1+x}, & x \geq 0 \\ \frac{-x}{1-x} & , x<0\end{array}\right.\)

    Graph of f(x)

    From graph we can see that, for two value of ‘x’, f(x) has same value so f(x) is not injective.

    Also, range of f(x) is [0, 1)

    So it is not surjective also.
    Hence, the correct option is (D)

  • Question 2
    1 / -0

    Combine terms: 12a + 26b -4b – 16a.

    Solution

    12a + 26b -4b – 16a.

    = 12a – 16a + 26b – 4b.

    = -4a + 22b

    Hence the correct option is C.

  • Question 3
    1 / -0

    Find the differential equation of the family of ellipse such that its centre is on the origin

    Solution
    Let the centre be at (0,0) Thus, the equation of the ellipse becomes \(\frac{(x)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)
    Differentiating w.r.t \(x,\) we get \(\Rightarrow \frac{2(x)}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0\)
    Thus,we get,\(\frac{d y}{d x}=-\left(\frac{x}{y}\right) \cdot \frac{b^{2}}{a^{2}}\)
    Differntiating the equation 1 w. r.t \(x\) \(\Rightarrow \frac{2}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d^{2} y}{d x^{2}}+\frac{2}{b^{2}} \cdot\left(\frac{d y}{d x}\right)^{2}=0\)
    \(\Rightarrow \frac{b^{2}}{a^{2}}+y \cdot \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0\)
    \(\Rightarrow-\frac{y}{x} \cdot \frac{d y}{d x}+y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0\)
  • Question 4
    1 / -0

    Solution

  • Question 5
    1 / -0

    If Area occupied by the curves with equation given below is A then Value of A/2 is-

    Equation \(1:(x-5)^{2}+y^{2}=25\)

    Equation \(2: y^{2}=9 x\)

    Solution

  • Question 6
    1 / -0

    Solution
    \((x-5)^{2}+y^{2}=25\) and \(y^{2}=9 x\)
    \((x-5)^{2}+9 x=25\)
    \(\Rightarrow x^{2}-10 x+9 x=0\)
    \(\Rightarrow x^{2}-x=0\)
    \(x=\{0,1\}\)
    So area in one quadrant \(\int_{0}^{1} \operatorname{circle}(y) d x-\operatorname{Parabola}(y) d x\)
    \(\Rightarrow \int_{0}^{1} \sqrt{25-(x-5)^{2}} d x-\sqrt{9 x} d x\)
    \(\Rightarrow\left|\left(\frac{x-5}{2}\right) \sqrt{25-(x-5)^{2}}+\frac{25}{2} \sin ^{-1}\left(\frac{x-5}{5}\right)-\frac{3.2}{3} x^{\frac{3}{2}}\right|_{0}^{1}\)
    \(\Rightarrow\left(-6-\frac{25}{2} \sin ^{-1}\left(\frac{4}{5}\right)-2\right)-\left(0-\frac{2}{2} \cdot \frac{\pi}{2}\right)\)
    \(\Rightarrow \frac{2 \pi}{4}-8-\frac{25}{2} \sin ^{-1}\left(\frac{4}{5}\right)\)
  • Question 7
    1 / -0

    If \(y=\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right),\) then \(\frac{d y}{d x}=\)

    Solution
    \(y=\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right)\)
    \(=\tan ^{-1}\left\{\frac{\sin (2 \alpha)}{1+\cos (2 \alpha)}\right\}\)
    where \(x=2 a\)
    \(=\tan ^{-1}\left(\frac{2 \sin \alpha \cos \alpha}{2 \cos ^{2} \alpha}\right)\)
    \(=\tan ^{-1}(\tan \alpha)\)
    \(\Rightarrow y=\alpha=\frac{1}{2} x\)
    \(\Rightarrow y=\frac{x}{2}\)
    \(\frac{d y}{d x}=\frac{1}{2}\)
  • Question 8
    1 / -0

    The number of values of k for which the system of equations (k + 1) x + 8y = 4k and
    kx + (k + 3)y = 3k - 1 has infinitely many solutions is

    Solution
    For infinitely many solutions, the two equations become identical \(\Rightarrow \frac{k+1}{k}=\frac{8}{k+3}=\frac{4 k}{3 k-1}\)
    from first 2
    \(\frac{k+1}{k}=\frac{8}{k+3}\)
    \(\Rightarrow k=1,3\)
    From last 2
    \(\frac{8}{k+3}=\frac{4 k}{3 k-1}\)
    \(\Rightarrow k=1,2\)
    so value of \(k\) which satisfy both is 1
    so \(k=1\) so number of values of \(\mathrm{k}\) is one.
  • Question 9
    1 / -0

    The eccentricity of an ellipse with its centre at the origin is 1/2. If one of the directrix is x = 4, then the equation of the ellipse is

    Solution
    \(e=\frac{1}{2}\)
    directrix, \(x=\frac{a}{e}=4\)
    \(\therefore a=4 \times \frac{1}{2}=2\)
    \(b=2 \sqrt{1-\frac{1}{4}}=\sqrt{3}\)
    Equation of ellipse is \(\frac{x^{2}}{4}+\frac{y^{2}}{3}=1\)
    \(\Rightarrow 3 x^{2}+4 y^{2}=12\)
  • Question 10
    1 / -0

    The value of \(\int_{0}^{1} \mathrm{x}(1-\mathrm{x})^{99} \mathrm{dx}\) is

    Solution
    \(\begin{aligned} I &=\int_{0}^{1} x(1-x)^{99} d x \\ &=\int_{0}^{1}(1-x)\{1-(1-x)\}^{99} d x \\ &=\int_{0}^{1}(1-x) x^{99} d x \\ &=\int_{0}^{1}\left(x^{99}-x^{100}\right) d x \\ &=\left[\frac{x^{100}}{100}-\frac{x^{101}}{101}\right]_{0}^{1} \\=& \frac{1}{100}-\frac{1}{101}=\frac{1}{10100} \end{aligned}\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now