Self Studies

Mathematics Test - 18

Result Self Studies

Mathematics Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If \(\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}\) are unit vectors such that the vector \(\overrightarrow{\mathrm{a}}+3 \overrightarrow{\mathrm{b}} \quad\) is perpendicular to \(7 \overrightarrow{\mathrm{a}}-5 \overrightarrow{\mathrm{b}}\) and \(\overrightarrow{\mathrm{a}}-4 \overrightarrow{\mathrm{b}} \quad\) is
    perpendicular to \(7 \overrightarrow{\mathrm{a}}-2 \overrightarrow{\mathrm{b}},\) then the angle between \(\overrightarrow{\mathrm{a}}\) and \(\overrightarrow{\mathrm{b}}\) is
    Solution
    Let \thetabe the angle between \({ }_{\mathrm{a}} \hat{\mathrm{x}} \overrightarrow{\mathrm{b}}\). \((\vec{a}+3 \vec{b}) \perp(\overrightarrow{7 a}-5 \vec{b})\)
    \((\vec{a}+3 \vec{b}) \cdot(7 \vec{a}-5 \vec{b})=0\)
    \(7|a|^{2}+16(i .6)-15|b|^{2}=0\)
    \(7+16 \cos \theta-15=0\)
    \(\cos \theta=\frac{1}{2}\)
    \(\theta=\frac{\pi}{3}\)
    And, \((\vec{a}-4 \vec{b}) \perp \overrightarrow{7 a}-2 \vec{b}\)
    \((\vec{a}-4 \vec{b}) \cdot(7 \vec{a}-2 \vec{b})=0\)
    \(7|a|^{2}+8|b|^{2}-30(i, b)=0\)
    \(15-30 \cos \theta=0 \cos \theta=\frac{1}{2} \theta=\frac{\pi}{3}\)
    Hence, the correct option is C.
  • Question 2
    1 / -0
    Let \(\mathrm{a}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}} \& \dot{\mathrm{b}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}} \cdot\) Then, the value of \(\lambda\) for which the vector \(\overrightarrow{\mathrm{c}}=\lambda \hat{\mathrm{i}}+\hat{\mathrm{j}}+(2 \lambda-1 \hat{\mathrm{k}}\) is parallel to the plane
    containing \(\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{b}},\) is
    Solution
    We are given that \(\overline{\mathrm{c}}\) is parallel to the plane containing \(\bar{a}\) and \(\bar{b}\) The plane containing vectors a and b can be \((\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})\). Then, \(\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=0\)
    \(\Rightarrow[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=0\)
    \(\Rightarrow\left|\begin{array}{ccc}2 & 3 & -1 \\ 1 & -2 & 3 \\ \lambda & 1 & 2 \lambda-1\end{array}\right|=0\)
    \(\Rightarrow 2(-4 \lambda+2-3)-3(2 \lambda-1-3 \lambda)-1(1+2 \lambda)=0\)
    \(\Rightarrow 2(-4 \lambda-1)-3(-\lambda-1)-1-2 \lambda=0\)
    \(\Rightarrow-8 \lambda-2+3 \lambda+3-1-2 \lambda=0\)
    \(\Rightarrow-7 \lambda=0\)
    \(\Rightarrow \lambda=0\)
    Hence, the correct option is B.
  • Question 3
    1 / -0

    The plane passing through the point (2, 2, 2) and containing the line joining the points,,,,
    (1, 1, 1) and (1, 1, 2) makes intercepts on the coordinates axes the sum of whose lengths is

    Solution
    Equation of any plane passing through (−2, −2, 2) is
    a(x + 2) + b(y + 2) + c(z – 2) = 0
    Since it contains the line joining the points (1, 1, 1) and (1, −1, 2), it contains these points as well
    so that
    3a + 3b – c = 0
    and 3a + b + 0 = 0
    Solving we get
    \(\frac{a}{1}=\frac{b}{-3}=\frac{c}{0}\)
    and thus the equation of the plane is \((x+2)-3(y+2)=0\)
    \(x+3 y-4=0\)
    \(\frac{x}{4}+\frac{y}{4 / 3}=1\)
    Intercepts on axes = 4, 4/3
    The required sum= 4+(4/3)=16/3
    Hence, the correct option is D.
  • Question 4
    1 / -0

    All the values of x satisfying the equation \(\left|\begin{array}{lll}x+1 & x+2 & 1 \\ x+2 & x+4 & 2 \\ x+3 & x+6 & 3\end{array}\right|\)= 0 are given by,

    Solution
    Using \(\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}\)we get \(\left|\begin{array}{lll}x+1 & 1 & 1 \\ x+2 & 2 & 2 \\ x+3 & 3 & 3\end{array}\right|\) =0
    If any two columns of the determinant is identical, then the determinant is always zero.
    Thus, all real values of x are possible.
    Hence, the correct option is C.
  • Question 5
    1 / -0

    The solution of the equation (2x + y + 1) dx + (4x + 2y – 1) dy = 0 is

    Solution
    Put \(2 x+y=x \Rightarrow 2+\frac{d y}{d x}=\frac{d X}{d x}\). Therefore, the given equation is reduced to \(\frac{d X}{d x}-2=-\frac{X+1}{2 X-1} \Rightarrow \frac{d X}{d x}=\frac{3(X-1)}{2 X-1}\)
    \(\Rightarrow \frac{2 \mathrm{X}-1}{3(\mathrm{X}-1)} \mathrm{dX}=\mathrm{dx} \Rightarrow \frac{1}{3}\left[2+\frac{1}{\mathrm{X}-1}\right] \mathrm{dX}=\mathrm{dx}\)
    \(\frac{1}{3}[2 \mathrm{X}+\log (\mathrm{X}-1)]=\times+\) constant
    \(2(2 x+y)+\log (2 x+y-1)=3 x+\) constant
    \(x+2 y+\log (2 x+y-1)=C\)
    Hence, the correct option is D.
  • Question 6
    1 / -0

    One angle of a triangle is 2x/3 grad, another is 3x/2 degrees, whilst the third is πx/75 radians. Express all angles in degress.

    Solution
    \(\frac{2}{3} x^{g}=\frac{2}{3} x\left(\frac{9}{10}\right)=\frac{3}{5} x^{0}\)
    And \(\frac{\pi x^{c}}{75}=\frac{\pi x}{75} \times \frac{180^{\circ}}{\pi}=\frac{12 x^{\circ}}{5}\)
    But \(\frac{3}{5} x^{0}+\frac{3}{2} x^{0}+\frac{12}{5} x^{0}=180^{\circ}\)
    \(\therefore 6 x^{0}+15 x^{0}+24 x^{0}=1800\)
    \(45 x^{0}=1800\)
    \(x=40^{\circ}\)
    Hence, the correct option is B.
  • Question 7
    1 / -0

    If \(\tan x=\frac{4}{3},\) then the value of \(\sqrt{\frac{(1-\sin x)(1+\sin x)}{(1+\cos x)(1-\cos x)}}\) is

    Solution
    \(\sqrt{\frac{(1-\sin x)(1+\sin x)}{(1+\cos x)(1-\cos x)}}\)
    \(=\sqrt{\frac{1-\sin ^{2} x}{1-\cos ^{2} x}} \ldots \ldots\left(\because(a-b)(a+b)=a^{2}-b^{2}\right)\)
    \(=\sqrt{\frac{\cos ^{2} x}{\sin ^{2} x}} \ldots \ldots\left(\because \sin ^{2} x+\cos ^{2} x=1\right)\)
    \(=\frac{\cos x}{\sin x}\)
    \(=\cot \theta\)
    \(=\frac{1}{\tan \theta}\)
    \(=\frac{1}{\frac{4}{3}}=\frac{3}{4}\)
    Hence, the correct option is B.
  • Question 8
    1 / -0
    \(\mathrm{f} y=\log \left(\frac{\sqrt{(x+1)}-1}{\sqrt{(x+1)}+1}\right)+\frac{\sqrt{x}}{\sqrt{(x+1)}},\) then by using
    substitution \(x=\tan ^{2} \theta, y\) reduces to
    Solution
    Given \(y=\log \left(\frac{\sqrt{(x+1)}-1}{\sqrt{(x+1)}+1}\right)+\frac{\sqrt{x}}{\sqrt{(x+1)}}\)
    Using substitution, \(x=\tan ^{2} \theta,\) we get
    \(\therefore y=\log \left(\frac{\sec \theta-1}{\sec \theta+1}\right)+\frac{\tan \theta}{\sec \theta}\)
    \(=\log \left(\frac{1-\cos \theta}{1+\cos \theta}\right)+\sin \theta\)
    \(=\log \left(\tan ^{2} \frac{\theta}{2}\right)+\sin \theta\)
    Hence, the correct option is B.
  • Question 9
    1 / -0

    Find the value of sin∠M in the right angled triangle shown in the figure.

    question

    Solution
    In a right-angled triangle with angle \(L=90^{\circ}\) Using Pythagorean theorem \((M K)^{2}=(M L)^{2}+(K L)^{2}\)
    \((K L)^{2}=(M K)^{2}-(M L)^{2}\)
    \(K L=\sqrt{(M K)^{2}-(M L)^{2}}\)
    Put the value from the figure, we get \(K L=\sqrt{12^{2}-10^{2}}\)
    \(K L=\sqrt{144-100}\)
    \(K L=\sqrt{44}\)
    \(\sin M=\frac{\text {Perpendicular}}{\text {Hypotenuse}}=\frac{K L}{M K}=\frac{\sqrt{44}}{12}\)
    Hence, the correct option is D.
  • Question 10
    1 / -0

    (cosec θ−sinθ)(secθ−cosθ)(tanθ+cotθ)=.......

    Solution
    \((\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)(\tan \theta+\cot \theta)\)
    \(=\left(\frac{1}{\sin \theta}-\sin \theta\right)\left(\frac{1}{\cos \theta}-\cos \theta\right)\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)\)
    using basic identities \(=\left(\frac{1-\sin ^{2} \theta}{\sin \theta}\right)\left(\frac{1-\cos ^{2} \theta}{\cos \theta}\right)\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cdot \cos \theta}\right)\)
    \(=\frac{\cos ^{2} \theta}{\sin \theta} \times \frac{\sin ^{2} \theta}{\cos \theta} \times \frac{1}{\sin \theta \cdot \cos \theta}=1 \times 1 \times 1=1\)
    Hence, the correct option is B.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now