Self Studies

Mathematics Test - 2

Result Self Studies

Mathematics Test - 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    \begin{equation}\text { If } \log \left(\frac{a-b}{2}\right)=\frac{1}{2}(\log a+\log b) \text { , then the value of } a^{2}+b^{2}-6 a b \text { is equal to }\end{equation}
    Solution

    \(\log \left(\frac{a-b}{2}\right)=\frac{1}{2}(\log a+\log b)\)
    \(\left.\log \left(\frac{a-b}{2}\right)=\frac{1}{2} \log (a \times b) \quad \ldots \log (a \cdot b)=\log a+\log b\right)\)
    \(\therefore \frac{a-b}{2}=a b^{\frac{1}{2}} \quad \ldots .\) removing \(\log\)
    Squaring both the sides we get
    \(\therefore \frac{(a-b)^{2}}{4}=a b\)
    \(\therefore a^{2}+b^{2}-2 a b=4 a b\)
    \(\therefore a^{2}+b^{2}-6 a b=0\)

    Hence option C is correct.
  • Question 2
    1 / -0

    If m=log20 and n=log25, then the value of x, so that  2log(x−4)=2m−n is equal to

    Solution

    \begin{equation}\begin{array}{l}
    m=\log 20 \\
    n=\log 25 \\
    2 \log (x-4)=2 \log 20-\log 25 \\
    \log (x-4)^{2}=\log 20^{2}-\log 25 \\
    =\log \left(\frac{20^{2}}{25}\right)=\log \frac{4 \times 5 \times 4 \times 5}{5 \times 5} \\
    \log (x-4)^{2}=\log 4^{2} \\
    x-4=4 \ldots \text { removing } \log \\
    x=8
    \end{array}\end{equation}

    Hence option B is correct.
  • Question 3
    1 / -0

    The set of all the solutions of the inequality log1−x(x−2)≥−1

    Solution

    \(\log _{1-x}(x-2) \geq-1\)
    Above equation is valid when, \(S_{1}=\{x-2>0\}\)
    \(S_{2}=\{1-x>0,1-x \neq 1\}\)
    Intersection of \(S_{1}\) and \(S_{2}\) is \(x=\{\emptyset\}\).

    Hence option D is correct.
  • Question 4
    1 / -0

    If a2=log x,b3=log y  and  3a2−2b3=6log z, then express y in terms of x and z

    Solution

    \(a^{2}=\log x, b^{3}=\log y\)
    \(3 a^{2}-2 b^{3}=6 \log z\)
    \(x=10^{a^{2}}, y=10^{b^{3}}, z=10^{\frac{1}{6}\left(3 a^{2}-2 b^{3}\right)}\)....(i)
    \(\therefore z=\frac{10^{a^{2} / 2}}{10^{b^{3} / 3}}\)....(ii)
    From 1 and 2 we get
    \(\therefore z=\frac{x^{\frac{1}{2}}}{y^{\frac{1}{3}}}\) and \(y=\frac{x^{\frac{3}{2}}}{z^{3}}\)

    Hence option C is correct.
  • Question 5
    1 / -0
    \begin{equation}\text { The solution set of }\left\{x: \log _{\frac{1}{3}} \log _{4}\left(x^{2}-5\right)>0\right\} \text { is equal to }\end{equation}
    Solution

    Let y={x:log13 log4(x25)>0}
    y={x:0<log4(x25)<1}
    y={x:40<x25<41}..[alogab=b]
    y={x:1<x25<4}
    y={x:6<x2<9}
    y=(3,6)(6,3)

    Hence option C is correct.

  • Question 6
    1 / -0
    \begin{equation}\text { The value of } \frac{1^{2}}{1.3}+\frac{2^{2}}{3.5}+\cdots+\frac{n^{2}}{(2 n-1)(2 n+1)} \text { is }\end{equation}
    Solution

    \(\frac{n^{2}}{(2 n-1)(2 n+1)}\)
    \(=\frac{4 n^{2}}{4(2 n-1)(2 n+1)}\)
    \(=\frac{1}{4}\left[\frac{4 n^{2}-1+1}{4 n^{2}-1}\right]\)
    \(=\frac{1}{4}\left[1+\frac{1}{4 n^{2}-1}\right]\)
    \(=\frac{1}{4}\left[1+\frac{1}{2}\left(\frac{2 n+1-(2 n-1)}{4 n^{2}-1}\right)\right]\)
    \(=\frac{1}{4}\left[1+\frac{1}{2}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)\right]\)
    Consider \(\frac{1}{2 n-1}-\frac{1}{2 n+1}\)
    \(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5} \ldots \frac{1}{2 n-1}-\frac{1}{2 n+1}\)
    \(=1-\frac{1}{2 n+1}\)
    \(=\frac{2 n}{2 n+1}\)
    Hence applying summation gives us
    \(\frac{n}{4}+\frac{1}{8} \sum\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)\)
    \(=\frac{n}{4}+\frac{2 n}{8(2 n+1)}\)
    \(=\frac{n}{4}+\frac{n}{4(2 n+1)}\)
    \(=\frac{n(2 n+1)+n}{4(2 n+1)}\)
    \(=\frac{n(2 n+2)}{4(2 n+1)}\)
    \(=\frac{n(n+1)}{2(2 n+1)}\)

    Hence option A is correct.
  • Question 7
    1 / -0
    \begin{equation}\forall n \in N, 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots+\frac{1}{\sqrt{n}} is\end{equation}
    Solution

    \(P(n)=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots+\frac{1}{\sqrt{n}}\)....(i)
    Put \(n=2\) in (1)
    \(P(2)=1+\frac{1}{\sqrt{2}}>\sqrt{2}\)
    Put \(n=3\) in ( 1\()\)
    \(P(3)=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}>\sqrt{3}\)
    So, let us assume
    \(P(n)=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots+\frac{1}{\sqrt{n}}>\sqrt{n}\)
    So, we will check for \(P(n+1)\)
    \(P(n+1)=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\)
    \(P(n+1)>\sqrt{n}+\frac{1}{\sqrt{n+1}}=\frac{\sqrt{n(n+1)}+1}{\sqrt{n+1}} \ldots(2)\)
    since, \(\sqrt{n(n+1)}>n\)
    \(\Rightarrow \sqrt{n(n+1)}+1>n+1\)
    \(\Rightarrow \frac{\sqrt{n(n+1)}+1}{\sqrt{n+1}}>\frac{n+1}{\sqrt{n+1}}\)
    \(\Rightarrow \frac{\sqrt{n(n+1)}+1}{\sqrt{n+1}}>\sqrt{n+1}\)
    From
    (2) and (3), it follows that \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}>\sqrt{n+1}\)
    Hence, by mathematical induction method, we can say that \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots+\frac{1}{\sqrt{n}}>\sqrt{n} \quad\) for \(n \in N, n \geq 2\)

    Hence option D is correct.
  • Question 8
    1 / -0

    The converse of p→(q→r) is

    Solution

    The converse of \(p \rightarrow(q \rightarrow r)\) is, \(\equiv(q \rightarrow r) \rightarrow p \equiv(\sim q \vee r) \rightarrow p \equiv(q \wedge \sim r) \rightarrow p\)

    Hence option A is correct.
  • Question 9
    1 / -0

    Which of the following is correct? 

    Solution

    Let's take option \(A\), \((\sim p \vee q) \equiv(p \wedge q)\)
    \(L H S=(\sim p \vee q)=p \rightarrow q\)
    \(R H S=(p \wedge q)\)
    Clearly, \(L H S \neq R H S\)
    Hence, option \(A\) is incorrect.
    Option \(B ,(p \rightarrow q) \equiv(\sim q \rightarrow \sim p)\)
    \(R H S=(\sim q \rightarrow \sim p)\)
    \(=\sim(\sim q) \vee \sim p\)
    \(=q \vee \sim p\)
    \(=\sim p \vee q\)
    \(=p \rightarrow q\)
    \(=L H S\)
    Hence, option \(B\) is correct
    Option \(C\) \(\sim(p \rightarrow \sim q) \equiv(p \wedge \sim q)\)
    \(L H S=\sim(p \rightarrow \sim q)\)
    \(=\sim[(\sim p) \vee(\sim q)]\)
    \(=\sim[\sim(p \wedge q)]\)
    \(=p \wedge q\)
    \(\neq R H S\)
    Hence, option \(C\) is incorrect.
    Option \(D , \sim(p \leftrightarrow q) \equiv(p \rightarrow q) \vee(q \rightarrow p)\)
    \(R H S=(p \rightarrow q) \vee(q \rightarrow p)\)
    \(=(\sim p \vee q) \vee(\sim q \vee p)\)
    \(L H S=\sim(p \leftrightarrow q)\)
    \(=\sim[(p \rightarrow q) \wedge(q \rightarrow p)]\)
    \(=\sim[(\sim p \vee q) \wedge(\sim q \vee p)]\)
    \(=[\sim(\sim p \vee q)] \vee[\sim(\sim q \vee p)]\)
    \(=[p \wedge(\sim q)] \vee[q \wedge(\sim p)]\)
    Hence, \(L H S \neq R H S\)
    Hence, option \(D\) is incorrect.

  • Question 10
    1 / -0

    When 12 divided by a positive integer n, the remainder is (n−3), which of the following is the possible value of ′n′?

    Solution

    When 12 divided by a positive integer \(n,\) the remainder is \((n-3)\) Thus, \(12=n k+(n-3),\) where is a \(k\) positive integer
    \(\Rightarrow 12=n k+n-3\)
    \(\Rightarrow 15=n(k+1)\)
    The divisors of 15 are 1,3,5,15 Thus, the possible values of \((n, k+1)\) are (1,15),(15,1),(3,5),(5,3) Now, (1,15),(15,1),(3,5) does not satisfy our initial equation \(12=n k+(n-3)\)
    Therefore \(n=5\) is the possible value.

    Hence option D is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now