Self Studies

Mathematics Test - 24

Result Self Studies

Mathematics Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    \(\int_{0}^{\pi / 2} \sqrt{\frac{1-\sin 2 x}{1+\sin 2 x}} d x=\)
    Solution
    \(I=\int_{0}^{\pi / 2} \sqrt{\frac{1-\sin 2 x}{1+\sin 2 x}} \cdot d x\)
    \(=\int_{0}^{\pi / 2} \sqrt{\frac{\cos ^{2} x+\sin ^{2} x-2 \sin x \cos x}{\cos ^{2} x+\sin ^{2} x+2 \sin x \cos x}} \cdot d x\)
    \(=\int_{0}^{\pi / 2} \sqrt{\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)^{2}} \mathrm{dx}\)
    \(=\int_{0}^{\pi / 2}\left|\frac{\cos x-\sin x}{\cos x+\sin x}\right| d x\)
    \(=\int_{0}^{\pi / 4} \frac{\cos x-\sin x}{\cos x+\sin x} d x-\int_{\pi / 4}^{\pi / 2} \frac{\cos x-\sin x}{\cos x+\sin x} d x\)
    put \(\cos x+\sin x=t \Rightarrow(\cos x-\sin x) d x=d t\)
    \(=\int_{1}^{\sqrt{2}} \frac{d t}{t}-\int_{\sqrt{2}}^{1} \frac{d t}{t}=\left.\ell n t\right|_{1} ^{\sqrt{2}}-\left.\ell n t\right|_{\sqrt{2}} ^{1}\)
    \(=\ell n \sqrt{2}+\ell n \sqrt{2}=\ell n 2\)
    Hence, the correct option is (A)
  • Question 2
    1 / -0

    The area of an expanding rectangle is increasing at the rate of 48 cm2/sec. The length of the rectangle is always equal to the square of the breadth. At the instant when the breadth is 4.5 cm, The length is increasing at the rate of

    Solution
    Let \(' l^{\prime}\left(=\mathrm{b}^{2}\right)\) and \({ }^{\prime} b^{\prime}\) be the length and breadth respectively of the rectangle.
    \(\therefore \mathrm{A},\) the area \(=l \times b=b^{2} \times b=b^{3}\)
    \(\therefore \frac{d A}{d t}=3 b^{2} \frac{d b}{d t} \Rightarrow 48=3 b^{2} \frac{d b}{d t}\)
    (1) [By the question]
    But \(l=b^{2} \Rightarrow \frac{d l}{d t}=2 b \frac{d b}{d t} \ldots \ldots \ldots .(2)\)
    \(\Rightarrow \frac{d \ell}{d t}=2 b \cdot \frac{1}{3 b^{2}} \frac{d A}{d t}\)
    \(=\frac{2}{3 b} \frac{d A}{d t}\)
    \(\left.\Rightarrow \frac{d l}{d t}\right|_{b=4.5}=\frac{2 \times 48}{3 \times 4.5}=7.11 \mathrm{cm} / \mathrm{sec}\)
    Hence, the correct option is (A)
  • Question 3
    1 / -0

    The following age group are included in the proportion indicated

    Age Group Relative Proportion in Population
    12 - 17 0.17
    18 - 23 0.31
    24 - 29 0.27
    30 - 35 0.21
    36 + 0.04
    Then number of people respectively in each age group should be included in a sample of 3000 people to make the sample representative is
    Solution

    If 0.17 is the population proportion of 'x' people following in the age group \(12-17\) then \(0.17=\frac{x}{3000}(\because\) the population given is of size 3000 )

    \(\Rightarrow x=0.17(3000)=510\)

    \(\therefore\) out of 3000 people 510 should fall in the age group \(12-17\)

    Similarly
    Age Group No. of people out of 3000
    12 - 17 0.17 * 3000 = 510
    18 - 23 0.31 * 3000 = 930
    24 - 29 0.27* 3000 = 810
    30 - 35 0.21* 3000 = 630
    36 + 0.04* 3000 = 120
    Hence, the correct option is (B)
  • Question 4
    1 / -0

    If ln(x + y) = 2xy, theny′ (0) is equal to

    Solution
    Given equation is \(\ln (x+y)=2 x y \ldots(1)\)
    For \(x=0\)
    \(\ln (0+y)=2.0 . y=0\)
    \(\Rightarrow \ln y=0\)
    \(\Rightarrow y=1\)
    Now, differentiating ( 1 ), we get
    \(\frac{1}{(x+y)}\left(1+\frac{\mathrm{dy}}{\mathrm{dx}}\right)=2 y+2 x \frac{\mathrm{dy}}{\mathrm{dx}}\)
    \(\Rightarrow\) At point (0,1)
    \(\left(\frac{1}{0+1}\right)\left(1+\frac{\mathrm{dy}}{\mathrm{dx}}\right)=2(1)+2.0 \cdot\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)\)
    \(\Rightarrow 1+\frac{d y}{d x}=2\)
    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1=y^{\prime}(0)\)
    Hence, the correct option is (A)
  • Question 5
    1 / -0

    ABCD is a square whose vertices A, B, C and D are (0, 0), (2, 0), (2, 2) and (0, 2) respectively. This square is rotated in the X - Y plane with an angle of 30° in anticlockwise direction about the vertex A. Now points B, C, D are converted as B', C' and D' respectively. Then equation of diagonal B' D' and equation of circumcircle AB'E is (E is centre of new square)

    Solution

    Side of the square \(=2\) unit Coordinates of \(\mathrm{B}^{\prime}, \mathrm{C}^{\prime}\) and \(\mathrm{D}^{\prime}\) are \((\sqrt{3}, 1),(\sqrt{3}-1, \sqrt{3}+1)\) and \((-1, \sqrt{3})\) respectively.

    Slope of \(B ^{\prime} D ^{\prime}=\frac{\sqrt{3}-1}{-1-\sqrt{3}}\)
    \begin{equation*}
    =\frac{(\sqrt{3}-1)(\sqrt{3}-1)}{-2}=\sqrt{3}-2
    \end{equation*}\(\therefore\) Equation of \(BD\) is\begin{equation*}
    y-1=(\sqrt{3}-2)(x-\sqrt{3})
    \end{equation*}\(\Rightarrow \quad(2-\sqrt{3}) x+y=2(\sqrt{3}-1)\)
    and equation of the circumcircle of the triangle AB'E (Apply diametric form as \(AB ^{\prime}\) is diameter)
    \begin{equation*}(x-0)(x-\sqrt{3})+(y-0)(y-1)=0
    \end{equation*}\(\Rightarrow x^{2}+y^{2}-x \sqrt{3}-y=0\)
    Hence, the correct option is (C)
  • Question 6
    1 / -0
    The probability that at least one of the events \(A\) and \(B\) occurs is \(0.6 .\) If \(A\) and \(B\) occur simultaneously with probability \(0.2,\) then \(P(\bar{A})+P(\bar{B})\) is: (where \(\bar{A}\) and \(\bar{B}\) are complements of \(A\) and \(B\) respectively)
    Solution
    Here, given that \(P(A \cup B)=0.6: P(A \cap B)=0.2\)
    \(\therefore P(\bar{A})+P(\bar{B})=1-P(A)+1-P(B)\)
    \(=2-(P(A)+P(B))\)
    \(=2-[P(A \cup B)+P(A \cup B)] \quad\{\) Using addition rule of probability \(P(A \cup B)=P(A)+P(B)-P(A \cap B)\}\)
    \(=2-[0.6+0.2]=2-0.8=1.2\)
    Hence, the correct option is (C)
  • Question 7
    1 / -0

    Consider the straight line ax + by = c, where a, b, c ∈ R+this line meets the coordinate axes at A and B respectively. If the area of the ΔOAB, O being origin, is always a constant equal to half, then

    Solution
    Given line is \(a x+b y=c\)
    \(\Rightarrow \frac{x}{\left(\frac{c}{a}\right)}+\frac{y}{\left(\frac{c}{b}\right)}=1\)
    \(\Rightarrow\) This line cut the coordinate axes as points \(A\left(\frac{c}{a}, 0\right)\) and \(B\left(0, \frac{c}{b}\right)\) respectively.
    $$
    \begin{aligned}
    \therefore \text { Area of } \Delta \mathrm{OAB} &=\frac{1}{2} \cdot \mathrm{OA} \cdot \mathrm{OB} \\
    &=\frac{1}{2} \cdot \frac{\mathrm{c}}{\mathrm{a}} \cdot \frac{\mathrm{c}}{\mathrm{b}} \\
    &=\frac{\mathrm{c}^{2}}{2 \mathrm{ab}}
    \end{aligned}
    $$
    Equating this area to half, we get,
    c^{2}=a b
    Therefore, \(a, c, b\) are in GP.
    Hence, the correct option is (B)
  • Question 8
    1 / -0
    The tangent at \(P\) on the hyperbola \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\) meets one of the asymptote at \(Q\). Then the locus of the mid point of \(\mathrm{PQ}\) is \(4\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)=\mathrm{k},\) where \(\mathrm{k}\) is
    Solution

     

    Tangent at point (a sec \(\theta, b\) tan \(\theta\) ) to the hyperbola
    \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\) is
    \(\frac{x \sec \theta}{a}-y \frac{\tan \theta}{b}=1 \ldots \ldots \ldots\) (i)
    equation of one of asymptote \(\Rightarrow \frac{x}{a}+\frac{y}{b}=0 \quad \ldots \ldots \ldots\)
    (ii)
    solving (1) and (2)
    we get the coordinate of \(Q\) on the asymptote.
    \(\mathrm{Q}:[a(\sec \theta-\tan \theta),-b(\sec \theta-\tan \theta)]\)
    Let coordinates of mid point of \(\mathrm{PQ}\) is \(\mathrm{M}\) ( \(\mathrm{h}, \mathrm{k}\) )
    \(\therefore \mathrm{h}=\frac{a \sec \theta+(a \sec \theta-a \tan \theta)}{2}\)
    or \(\frac{\mathrm{h}}{a}=\sec \theta-\frac{\tan \theta}{2} \ldots \ldots .(3)\)
    similary, \(k=\frac{b \tan \theta-b \sec \theta+b \tan \theta}{2}\)
    \(\frac{k}{b}=\tan \theta-\frac{\sec \theta}{2} \quad \ldots \ldots \ldots .(4)\)
    \((3)+(4) \Rightarrow \frac{\mathrm{h}}{a}+\frac{k}{b}=\frac{\sec \theta+\tan \theta}{2} \quad \cdots \cdots \cdots \cdots\)
    \((3)-(4) \Rightarrow \frac{h}{a}-\frac{k}{b}=\frac{3}{2}(\sec \theta-\tan \theta) \quad \ldots \ldots \ldots \ldots\)
    Now, \((5) \times(6) \Rightarrow \frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}=\frac{3}{4}\)
    or, \(4\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)=3\)
    \(\Rightarrow k=3\)
    Hence, the correct option is (A)

     

  • Question 9
    1 / -0

    If y=7x − x3and x increases at the rate of 4 units per second, then the rate of change in slope of the curve when x = 3, is

    Solution
    We have : \(\mathbf{y}=7 \mathrm{x}-\mathrm{x}^{3}\)
    \(\therefore \mathrm{m},\) the slope of the curve \(=\frac{\mathrm{dy}}{\mathrm{dx}}=7-3 \mathrm{x}^{2}\)
    Now \(\mathrm{m}=7-3 \mathrm{x}^{2}\)
    \(\therefore \frac{d m}{d t}=-6 x \frac{d x}{d t} \Rightarrow \frac{d m}{d t}=-6 x(4)\)
    \(\Rightarrow \frac{d m}{d t}=-24 x\)
    \(\left.\therefore \frac{d m}{d t}\right]_{x=3}=-24(3)=-72\)
    Hence the rate of change of slope \(=72\)
    Hence, the correct option is (A)
  • Question 10
    1 / -0

    The equation of the common tangent to the equal parabolas y2 = 4ax and x2 = 4ay is

    Solution
    Any tangent to \(y^{2}=4 a x\) is \(y=m x+\frac{a}{m}\) if touches \(x^{2}=4 a y\) if \(x^{2}=4 a\left(m x+\frac{a}{m}\right),\) i \(e \cdot x^{2}-4 a m x-\frac{4 a^{2}}{m}=0\)
    has equal roots
    So, \(m^{3}+1=0,\) i.e. \(, m=-1 .\) Hence, the common tangent is \(y=-x-a\)
    Hence, the correct option is (A)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now