Self Studies

Mathematics Test - 27

Result Self Studies

Mathematics Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The complex number z=1+i represented by the point P in argand plane and OP is rotated by an angle of (π/2) in counter clock wise direction then the resulting complex number is:

    Solution
    \(z=1+i\)
    \(\therefore \arg z=\tan ^{-1}\left(\frac{1}{1}\right)=\frac{\pi}{4}\)
    Let the complex number obtained after rotation be \(z_{1}\) \(\therefore \arg \left(z_{1}\right)=\frac{\pi}{4}+\frac{\pi}{2}\)
    \(=\frac{3 \pi}{4}\)
    \(z_{1}=-1+i\)
    Now, \(\bar{z}=1-i\)
    Hence, \(z_{1}=-\bar{z}\)
    Hence, the correct option is (C)
  • Question 2
    1 / -0

    If a>0 and z|z|+az+2a=0, then z must be-

    Solution
    \(z|z|+\boldsymbol{a} z+\mathbf{2} \boldsymbol{a}=(\boldsymbol{x}+i y) \sqrt{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}+\boldsymbol{a}(\boldsymbol{x}+i \boldsymbol{y})+2 \boldsymbol{a}=\mathbf{0}\)
    by comparsion \(y \sqrt{x^{2}+y^{2}}+a y=0\)
    \(y=0\)
    \(x \sqrt{x^{2}+y^{2}}+a x+2 a=0\)
    \(" \mathrm{a}^{\text {" }}\) is positive so \(\mathrm{x}\) should be negative.
    \(\therefore z\) is a negative real number.
    Hence, the correct option is (C)
  • Question 3
    1 / -0

    If 2i2+6i3+3i16−6i19+4i25=x+iy, then (x,y)=

    Solution
    The value of \(2 i^{2}+6 i^{3}+3 i^{16}-6 i^{19}+4 i^{25}\)
    \(=-2-6 i+\left[3(-1)^{8}\right]-\left[6 i^{18} \cdot i\right]+\left[4 i^{24} \cdot i\right]\)
    \(=-2-6 i+3-\left[6(-1)^{9} \cdot i\right]+\left[4(-1)^{12} \cdot i\right]\)
    \(=1-6 i+6 i+4 i\)
    \(=1+4 i\)
    \(=x+i y\)
    Hence, \((x, y)=(1,4)\)
    Hence, the correct option is (A)
  • Question 4
    1 / -0

    The necessary and sufficient condition for the points z1, z2, z3 to be collinear is that-

    Solution
    Let \(z_{1}=r_{1} e^{i \theta_{1}}, z_{3}=r_{3} e^{i \theta_{3}}\)
    \& \(x_{2}\) be origin \(\frac{z_{3}-z_{2}}{z_{2}-z_{1}}\)
    \(=\frac{r_{3} e^{i \theta_{3}}}{-r_{1} e^{i \theta_{1}}}\)
    \(=\frac{r_{3}}{-r_{1}} e^{i\left(\theta_{1}-\theta_{1}\right)}\)
    For the points to be collinear \(\left(\theta_{3}-\theta_{1}\right)=0\) \(\frac{z_{3}-z_{2}}{z_{2}-z_{1}}=\frac{r_{3}}{r_{1}}\)
    and we know that \(\frac{r_{3}}{r_{1}}\) is real \(\frac{z_{3}-z_{2}}{z_{2}-z_{1}}\) is purely real.
    Hence, the correct option is (A)
  • Question 5
    1 / -0

    z1,z2 are the roots of the equation z2+az+b=0. Let z1, z2 and the origin be the vertices of an equilateral triangle. Then a2−3b=

    Solution
    For equilateral \(\Delta\), \(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-z_{1} z_{2}-z_{2} z_{3}-z_{3} z_{1}=0\)
    We have \(z_{3}=0\)
    \(\therefore z_{1}^{2}+z_{2}^{2}-z_{1} z_{2}=0\)
    (1)
    \(z_{1} \& z_{2}\) are roots of \(z^{2}+a z+b\)
    \(\therefore z_{1}+z_{2}=-a\)
    \(z_{1} z_{2}=b\)
    \(\therefore z_{1}^{2}+z_{2}^{2}=a^{2}-2 b\)
    purting the values in equation 1 \(a^{2}-2 b-b=0\)
    \(\therefore a^{2}-3 b=0\)
    Hence, the correct option is (A)
  • Question 6
    1 / -0
    If \(i^{2}=-1\) then the value of \(\sum_{n=1}^{200} i^{2 n}\) is:
    Solution
    As \(i^{2}=-1\)
    \(\Rightarrow i^{2 n}=(-1)^{n}\)
    For \(n=\) odd \(, i^{2 n}=-1\)
    For \(n=\) even, \(i^{2 n}=1\)
    There are equal number of even and odds in between 1 to 200
    \(\Rightarrow \sum_{n=1}^{200}=-1+1-1+1-\ldots \ldots .=0\)
    Hence, the correct option is (C)
  • Question 7
    1 / -0

    (1+i+i2+i3+i4+i5)(1+i)=

    Solution
    \(\mathbf{1}+i+i^{2}+i^{3}+i^{4}+i^{5}\) forms a G.P series
    with a common ratio of i'. Hence \(1+i+i^{2}+i^{3}+i^{4}+i^{5}\)
    \(=\frac{1-i^{6}}{1-i}\)
    \(=\frac{1-\left((i)^{2}\right)^{3}}{1-i}\)
    \(=\frac{2}{1-i}\)
    Now \(\left(1+i+i^{2}+i^{3}+i^{4}+i^{5}\right)(i+1)\)
    \(=\left(\frac{2}{1-i}\right)(i+1)\)
    \(=\frac{2(i+1)}{1-i}\)
    \(=\frac{2(i+1)^{2}}{(1-i)(i+1)}\)
    \(=\frac{2(1-1+2 i)}{2}\)
    \(=2 i\)
    Hence, the correct option is (B)
  • Question 8
    1 / -0

    If a,b,c are real and a+b+c=0 (for at least one of a,b,c non zero ) and az1+bz2+cz3=0 then z1,z2,z3 are

    Solution
    The necessary and sufficient condition for the points \(z_{1}, z_{2} \& z_{3}\) to be collinear is \(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\) ie purely real. Given that \(a z_{1}+b z_{2}+c z_{3}=0\)
    \(a z_{1}+b z_{2}+(-a-b) z_{3}=0\)
    \(a+b+c=0]\)
    \(a\left(z_{1}-z_{3}\right)+b\left(z_{2}-z_{3}\right)=0\)
    \(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{-b}{a} \quad[\therefore a, b, c\) are real \(]\)
    \(\frac{-b}{a}\) is purely real
    Therefore \(z_{1}, z_{2} \& z_{3}\) are collinear points.
    Hence, the correct option is (D)
  • Question 9
    1 / -0

    If z1, z2, z3,are in A.P, then which of the following is/are true?

    Solution
    Let \(z_{d}\) be the common difference between complex numbers, then, \(z_{2}=z_{1}+z_{d}\)
    \(z_{3}=z_{1}+2 z_{d}\)
    we see that, \(\left|z_{2}-z_{1}\right|=\left|z_{d}\right|\)
    \(\left|z_{3}-z_{2}\right|=\left|z_{d}\right|\)
    and \(\left|z_{3}-z_{1}\right|=2\left|z_{d}\right|\)
    We find that the sum of distances of \(z_{2}\) from \(z_{3}\) and \(z_{1}\) equals distance between \(z_{3}\) and \(z_{1}\) which is possible only if. \(z_{1}, z_{2}, z_{3}\) lie on a straight line.
    Hence, the correct option is (A)
  • Question 10
    1 / -0

    \(i^{57}+\frac{1}{i^{125}}=\)

    Solution
    \(i^{57}+\frac{1}{i^{125}}\)
    \(=\left(i^{56} \cdot i\right)+\frac{i}{i^{126}}\)
    \(=\left(\left(i^{2}\right)^{28} \cdot i\right)+\frac{i}{\left(i^{2}\right)^{63}}\)
    \(=\left((-1)^{28} \cdot i\right)+\frac{i}{(-1)^{63}}\)
    \(=i-i\)
    \(=0\)
    Hence, the correct option is (A)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now