Self Studies

Mathematics Test - 28

Result Self Studies

Mathematics Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    \(\text { Find } \theta \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right] \text { satisfying } 2 \cos ^{2} \theta+\sin \theta \leq 2\)
    Solution
    \(2 \cos ^{2} \theta+\sin \theta \leq 2\)
    \(\cos ^{2} \theta+\sin ^{2} \theta=1\)
    \(=2\left(1-\sin ^{2} \theta\right)+\sin \theta \leq 2\)
    \(=2-2 \sin ^{2} \theta+\sin \theta \leq 2\)
    \(=2 \sin ^{2} \theta-\sin \theta \geq 0\)
    \(=2 t^{2}-t \geq 0\)
    let \(\sin \theta=t\)
    \(t(2 t-1) \geq 0\)
    \((t)(2 t-1) \geq 0\)
    \(t \in(-\infty, 0]\) and \([1 / 2,-\infty)\)
    \(t=\sin \theta\) and \(\sin \theta \epsilon[-1,-1]\)
    so
    \(\sin \theta \in[-1,0]\) and \([1 / 2,1]\)
    Hence , the correct option is B
  • Question 2
    1 / -0

    The locus of the midpoints of the chords of the circle \(x^{2} y^{2}=16\) which are tangents to the hyperbola \(9 x^{2}-16 y^{2}=144\) is

    Solution
    Let \((\mathrm{h}, \mathrm{k})\) be the middle point of a chord of the circle \(x^{2}+y^{2}=16\)
    Then its equation is \(h x+k y-16=h^{2}+k^{2}-16 i . e .\)
    \(h x+k y=h^{2}+k^{2} \ldots\) (i)
    Let (i) touch the hyperbola
    \(9 x^{2}-16 y^{2}=144\) i.e., ... (ii)
    At the point (ii) say, then (i) is identical with \(\frac{x \alpha}{16}-\frac{y \beta}{9}=1\)
    (iii)
    Thus \(\frac{\alpha}{16 h}=-\frac{\beta}{9 k}=\frac{1}{h^{2}+k^{2}}\)
    \(\alpha=\frac{16 h}{h^{2}+k^{2}}\) and \(\beta=-\frac{9 k}{h^{2}+k^{2}}\)
    since (i) lies on the hyperbola (ii),
    \(\frac{1}{16}\left(\frac{16 h}{h^{2}+k^{2}}\right)^{2}-\frac{1}{9}\left(\frac{9}{h^{2}+k^{2}}\right)^{2}=1\)
    \(16 h^{2}-9 k^{2}=\left(h^{2}+k^{2}\right)^{2}\)
    Hence the required locus of \((\mathrm{h}, \mathrm{k})\) is \(\left(x^{2}+y^{2}\right)^{2}=16 x^{2}-9 y^{2}\)
    Hence, the correct option is (A)
  • Question 3
    1 / -0

    In an acute - angled triangle ABC, points D, E and F are the feet of the perpendiculars from A, B and C onto BC, AC and AB, respectively. H is the orthocentre of ∆ABC . If sin A = 3/5 and BC = 39, then the length of AH is:

    Solution

  • Question 4
    1 / -0

    lf Z=x+iy is a complex number then |x|+|y|≤ ?

    Solution
    \(z=x+i y=r \cos \theta+i r \sin \theta\) where \(|z|=r\)
    Now, \(|x|+|y|=|r \cos \theta|+|r \sin \theta|\)
    \(=|r|\{\cos \theta|+| \sin \theta \mid\}\)
    But \(-\sqrt{2}<\cos s \theta+\sin \theta<\sqrt{2}\)
    \(\Rightarrow|x|+|y| \leqslant \sqrt{2}|r|\)
    \(\leqslant \sqrt{2}|z|\)
    Hence, the correct option is (A)
  • Question 5
    1 / -0
    Let \(\omega\) be a complex number such that \(2 \omega+1=z\) where \(z=\sqrt{-3}\), if \(\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7}\end{array}\right|=3 k,\) then \(k\) ie equal to.
    Solution
    \(2 w+1=z\)
    \(2 w+1=\sqrt{3} i\)
    \(w=\frac{-1+\sqrt{3} i}{2}\)
    \(\Rightarrow w^{2}=\frac{-1-\sqrt{3} i}{2}=-w-1\)
    Now, \(\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7}\end{array}\right|=3 k\)...Given
    \(\Rightarrow\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & w & w^{2} \\ 1 & w^{2} & w\end{array}\right|=3 k\)
    \(1\left(w^{2}-w^{4}\right)-1\left(w-w^{2}\right)+1\left(w^{2}-w\right)=3 k\)
    \(3 w^{2}-3 w=3 k\)
    \(3\left(w^{2}-w\right)=3 k\)
    \(k=w^{2}-w\)
    \(k=-1-2 w\)
    \(=-1-(-1+\sqrt{3} i)\)
    \(=-\sqrt{3} i\)
    \(=-z\)
    Hence, the correct option is (A)
  • Question 6
    1 / -0

    Let ω be a cube root of unity not equal to 1. Then the maximum possible value of |a+bω+cω2| where a, b, c ϵ {+1,-1} is:

    Solution
    \(\omega^{3}=1\)
    \(\therefore \omega^{3}-1=0\) or \((\omega-1)\left(\omega^{2}+\omega+1\right)=0\)
    since \(\omega \neq 1, \omega=\frac{-1+i \sqrt{3}}{2}, \omega^{2}=\frac{-1-i \sqrt{3}}{2}\)
    \(\left|a+b \omega+\alpha \omega^{2}\right|=\left|a-\frac{(b+c)}{2}+i\left(\frac{\sqrt{3}}{2}\right)(b-c)\right|\)
    Square of the modulus is given by \(\left(\frac{2 a-b-c}{2}\right)^{2}+\left(\frac{\sqrt{3}(b-c)}{2}\right)^{2}\)
    This can be maximised by substituting \(a=1, b=1, c=-1\) or \(a=-1, b=1, c=1\)
    Both the substitutions yield the same result, of 4 \(\Rightarrow\) maximum modulus \(=2\)
    Hence, the correct option is (B)
  • Question 7
    1 / -0

    Number of solutions of the equation |z|2+7z=0 is:

    Solution
    Let \(z=x+i y\) Then, \(|z|^{2}+7 z=x^{2}+y^{2}+7(x+i y)=0\)
    \(\Rightarrow x^{2}+y^{2}+7 x=0\) \& \(7 y=0\)
    \(\Rightarrow x^{2}+7 x=0\) and \(y=0\)
    \(\Rightarrow x=-7\) or \(x=0\) and \(y=0\)
    So, solutions are \(z=7\) or \(z=0\) Hence, two solutions.
    Hence, the correct option is (B)
  • Question 8
    1 / -0

    If ω is a cube root of unity but not equal to 1, then minimum value of ∣a+b+cω2∣ (where a,b,ca,b,c are integers but not all equal) is:

    Solution
    Let \(y=\left|a+b w+c w^{2}\right|\)
    For \(y\) to be minimum \(y^{2}\) must be minimum \(y^{2}=\left|a+b w+c w^{2}\right|^{2}\)
    \(=\left(a+b w+c w^{2}\right)\left(a+b w+c w^{2}\right)\)
    \(=\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]\)
    since, \(a, b, c\) are not equal at a time. So, minimum value of \(y^{2}\) occurs when any two are same and third is differ by \(1 .\) Thus minimum of \(y=1\) (as \(a, b, c\) are integers).
    Hence, the correct option is (C)
  • Question 9
    1 / -0
    If \(\left|z_{1}\right|=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3\) and \(\left|9 z_{1} z_{2}+4 z_{1} z_{3}+z_{2} z_{3}\right|=12,\) then the value of \(\left|z_{1}+z_{2}+z_{3}\right|\)
    is
    Solution
    Given \(\left|z_{1}\right|=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3\) and \(\left|9 z_{1} z_{2}+4 z_{1} z_{3}+z_{2} z_{3}\right|=12\)
    \(\left|9 z_{1} z_{2}+4 z_{1} z_{3}+z_{2} z_{3}\right|=12\)
    \(\Rightarrow\left|z_{1}\right|\left|z_{2}\right|\left|z_{3}\right|\left|\frac{9}{z_{3}}+\frac{4}{z_{2}}+\frac{1}{z_{1}}\right|=12\)
    \(\Rightarrow 6\left|\frac{9 \bar{z}_{3}}{\left|z_{3}\right|^{2}}+\frac{4 \bar{z}_{2}}{\left|z_{2}\right|^{2}}+\frac{\bar{z}_{1}}{\left|z_{1}\right|^{2}}\right|=12\)
    \(\Rightarrow 6\left|z_{1}+z_{2}+z_{3}\right|=12\)
    \(\Rightarrow 6\left|z_{1}+z_{2}+z_{3}\right|=12\)
    \(\therefore\left|z_{1}+z_{2}+z_{3}\right|=2\)
    Hence, the correct option is (C)
  • Question 10
    1 / -0
    Let \(z=x+i y\) be a complex number where \(x\) and \(y\) are integers. Then the area of the
    rectangle whose vertices are the roots of the equation \(\bar{z} z^{3}+z \bar{z}^{3}=350\) is:
    Solution
    \(\bar{z} z^{3}+z \bar{z}^{3}=350\)
    \(z \bar{z}\left(\bar{z}^{2}+z^{2}\right)=350\)
    Put \(z=x+i y\)
    \(\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=175\)
    since \(\mathrm{x}\) and \(\mathrm{y}\) are integer so only possibility is \(x^{2}+y^{2}=25\)
    and
    \(x^{2}-y^{2}=7\)
    so solving these equation we get
    \(x=\pm 4, y=\pm 3\)
    Thus required area \(=8 \times 6=48\) sq. unit.
    Hence, the correct option is (A)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now