Self Studies

Mathematics Test - 3

Result Self Studies

Mathematics Test - 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    \begin{equation}\text { If } \log _{4}(3-x)+\log _{0.25}(3+x)=\log _{4}(1-x)+\log _{0.25}(2 x+1) it has \end{equation}
    Solution

    For given expression to be defined, \(3-x>0 \Rightarrow x<3,1-x>0 \Rightarrow x<1 \Rightarrow(i)\)
    \(3+x>0,2 x+1>0 \Rightarrow x>-1 / 2\)
    Thus domain is : \(x \in\left(-\frac{1}{2}, 1\right)=D\) (say) We have, \(\log _{4}(3-x)+\log _{25}(3+x)=\log _{4}(1-x)+\log _{0.25}(2 x+1)\)
    \(\Rightarrow \log _{4}(3-x)+\log _{1 / 4}(3+x)=\log _{4}(1-x)+\log _{1 / 4}(2 x+1)\)
    \(\Rightarrow \log _{4}(3-x)-\log _{4}(3+x)=\log _{4}(1-x)-\log _{4}(2 x+1),\left[\log _{1 / a} b=-\log _{a} b\right]\)
    \(\Rightarrow \log _{4} \frac{(3-x)}{(3+x)}=\log _{4} \frac{(1-x)}{(2 x+1)},\left[\because \log a-\log b=\log \frac{a}{b}\right]\)
    \(\Rightarrow\left(\frac{3-x}{3+x}\right)=\left(\frac{1-x}{2 x+1}\right)\)
    \(\Rightarrow 6 x+3-2 x^{2}-x=3+x-3 x-x^{2}\)
    \(\Rightarrow x^{2}-7 x=0 \Rightarrow x=0,7\)
    But \(7 \notin D, \therefore x=0\) is the only solution Thus, it has only one real solutions.

    Hence option A is correct.
  • Question 2
    1 / -0
    \begin{equation}\operatorname{Let} \log _{e}\left(\frac{a+b}{2}\right)=\frac{1}{2}\left(\log _{e} a+\log _{e} b\right) \cdot \text { If } a=4, \text { then the value of } b \text { would be }\end{equation}
    Solution

    \begin{equation}\begin{array}{l}
    \text { Given, } \log _{e}\left(\frac{a+b}{2}\right)=\frac{1}{2}\left(\log _{e} a+\log _{e} b\right)=\frac{1}{2} \log _{e}(a b),[\because \log x+\log y=\log (x y)] \\
    \Rightarrow \log _{e}\left(\frac{a+b}{2}\right)=\left(\log _{e} \sqrt{a b}\right)\left[\because x \log a=\log a^{x}\right] \\
    \Rightarrow \frac{a+b}{2}=\sqrt{a b} \\
    \Rightarrow a+b-2 \sqrt{a b}=0 \\
    \Rightarrow(\sqrt{a}-\sqrt{b})^{2}=0 \\
    \Rightarrow a=b \\
    \text { Given } a=4 \Rightarrow b=4
    \end{array}\end{equation}

    Hence option A is correct.
  • Question 3
    1 / -0

    If 3=k.2r and 15=k.4r, then the value of r will be

    Solution

    Given, \(3=k \cdot 2^{r}\) and \(15=k .4^{r}\)
    We have, \(15=k .4^{r}\) \(\Rightarrow 3 \times 5=k .4^{r}\)
    \(\Rightarrow k .2^{r} \times 5=k .4^{r} \ldots . . .\)
    \(\left(\because 3=k \cdot 2^{r}\right)\)
    \(\Rightarrow 2^{r} \cdot 5=2^{2 r}\)
    \(\Rightarrow 2^{r}=5\)
    \(\Rightarrow r=\log _{2} 5\)

    Hence option A is correct.
  • Question 4
    1 / -0

    If 6(logx2−log4x)+7=0, then find the values of x

    Solution

    \(6\left(\log _{x} 2-\log _{4} x\right)+7=0\)
    or \(\left(\log _{x} 2-\frac{1}{2} \log _{2} x\right)+7=0\)
    \(6\left(\frac{1}{y}-\frac{y}{2}\right)+7=0\)
    (where \(y=\log _{2} x\) )
    or \(6\left(\frac{2-y^{2}}{2 y}\right)+7=0\)
    or \(3\left(\frac{2-y^{2}}{y}\right)+7=0\)
    \(6-3 y^{2}+7 y=0\)
    \(3 y^{2}-7 y-6=0\)
    or \(y^{2}+2 y-9 y-6=0\)
    \((y-3)(3 y+2)=0\)
    or \(y=3\) or \(y=-\frac{2}{3}\) \(\Rightarrow \log _{2} x=3\) or \(-\frac{2}{3}\)
    or \(x=8\) or \(x=2^{-\frac{2}{3}}\)

    Hence option A is correct.
  • Question 5
    1 / -0
    \begin{equation}\text { If } \ln \left(\frac{a+b}{3}\right)=\left(\frac{\ln a+\ln b}{2}\right), \text { then } \frac{a}{b}+\frac{b}{a} \text { is equal to }\end{equation}
    Solution

    \(\ln \left(\frac{a+b}{3}\right)=\frac{\ln a+\ln b}{2}\)
    \(\ln \left(\frac{a+b}{3}\right)=\frac{\ln a b}{2}\)
    \(\ln \left(\frac{a+b}{3}\right)=\ln \sqrt{a b}\)
    Therefore \(\frac{a+b}{3}=\sqrt{a b}\)
    \(a+b=3 \sqrt{a b}\)
    \(\frac{a+b}{\sqrt{a b}}=3\)
    \(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}=3\)
    Squaring both sides give us
    \((\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}})^{2}=9\)
    \(\frac{a}{b}+\frac{b}{a}+2=9\)
    \(\frac{a}{b}+\frac{b}{a}=7\)

    Hence option D is correct.
  • Question 6
    1 / -0

    If log2 x+log2y ≥ 6, then the least value of x+y is

    Solution

    \(\log _{2} x+\log _{2} y \geq 6\)
    \(\Rightarrow \log _{2} x y \geq 6,[\because \log a+\log b=\log (a b)]\)
    \(\Rightarrow x y \geq 2^{6}=64\)....(i)
    Also for \(\log x\) and \(\log y\) to be defined we must have, \(x>0 \&\) \(y>0\)
    Now using, \(A . M . \geq G . M\)
    \(\Rightarrow \frac{x+y}{2} \geq \sqrt{x y}\)
    \(\Rightarrow \frac{x+y}{2} \geq \sqrt{64}=8 \quad \ldots\{\)
    From 1\(\}\)
    \(\Rightarrow x+y \geq 16\)

    Hence option C is correct.
  • Question 7
    1 / -0

    Solve for x, log69−log927+log8x=log64x−log64

    Solution

    \(\log _{6} 9-\log _{9} 27+\log _{8} x=\log _{64} x-\log _{6} 4\)
    \(\log _{8} x-\log _{64} x=\log _{9} 27-\log _{6} 4-\log _{6} 9\)
    \(\log _{8} x-\log _{8^{2}} x=\log _{3^{2}} 27-\log _{6} 36\)
    \(\log _{8} x-\frac{1}{2} \log _{8} x=\frac{1}{2} \log _{3} 27-2\)
    \(\Rightarrow \frac{1}{2} \log _{8} x=\frac{3}{2}-2\)
    \(\Rightarrow \log _{8} x=-1\)
    \(\Rightarrow 8^{-1}=x\)
    or \(x=\frac{1}{8}\)
    Given eqn is defined for \(x>0\)
    Hence, \(x=\frac{1}{8}\) is solution of given equation.

    Hence option C is correct.
  • Question 8
    1 / -0
    If \(x>0\) and \(y>0,\) then the values of \(x\) and \(y\) from \(\log x y=\log \frac{x}{y}+2 \log 2=2\) are
    Solution

    \(\log x+\log y=\log x-\log y+\log 4=0\)
    \(\log y=-\log y+\log 4 \quad \ldots\) (Canceling \(\log\) x on both sides \()\)
    \(2 \log y=\log 4\)
    \(\log y^{2}=\log 2^{2}\)
    \(y=2\)
    \(\log 2 x=2\)
    Assuming base 10
    \(2 x=10^{2}\)
    \(x=50\)

    Hence option B is correct.
  • Question 9
    1 / -0
    The set of all solutions of the inequality \(\left(\frac{1}{2}\right)^{x^{2}-2 x}<\frac{1}{4}\) is
    Solution

    \(\left(\frac{1}{2}\right)^{x^{2}-2 x}<\frac{1}{4}\)
    Taking logarithm on both sides, we get \(\left(x^{2}-2 x\right) \log \left(\frac{1}{2}\right)<\log \left(\frac{1}{4}\right)=\log \left(\frac{1}{2}\right)^{2}=2 \log \left(\frac{1}{2}\right)\)
    \(\Rightarrow\left(x^{2}-2 x\right)>2,\) since \(\log (1 / 2)<0\)
    \(\Rightarrow(x-(1+\sqrt{3}))(x-(1-\sqrt{3}))>0\)
    \(\Rightarrow x>1+\sqrt{3}\) or \(x<1-\sqrt{3}\)
    Therefore, \(x \in (-\infty, 1-\sqrt{3}) \cup(1+\sqrt{3}, \infty)\)

    Hence option D is correct.
  • Question 10
    1 / -0

    If log3x+log3y=2+log32 and log3(x+y)=2, then the values of x and y are

    Solution

    \(\log _{3} x+\log _{3} y=2+\log _{3} 2=2 \log _{3} 3+\log _{3} 2,\left[\because \log _{3} 3=1\right]\)
    As, \([\log a+\log b=\log (a b)]\) and \(\left[\because x \log a=\log a^{x}\right]\)
    \(\Rightarrow \log _{3} x y=\log _{3} 3^{2}+\log _{3} 2\)
    \(\Rightarrow \log _{3} x y=\log _{3} 18\)
    \(\Rightarrow x y=18\)
    \(\log _{3}(x+y)=2\)
    \(\Rightarrow x+y=3^{2}=9\)
    On solving equation ( 1 ) \(\&\) ( 2 ), we get \(x=3, y=6\)

    Hence option C is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now