Self Studies

Mathematics Test - 30

Result Self Studies

Mathematics Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The line x = c cuts the triangle with corners (0, 0), (1, 1) and (9, 1) into two regions. For the area of the two regions to be the same c must be equal to :

    Solution

    The area of the triagle formed by three given vertices is

    Now the line x=c bisect the area of triangle in two equal parts so the area of the both the parts of the triangle must be four

  • Question 2
    1 / -0

    Which of the following functions is periodic?

    Solution
    Clearly, \(f(x)=x-[x]=\{x\}\)
    which has period 1
    Let \(\sin \left(\frac{1}{\mathrm{x}}\right)\) be periodic with period \(\mathrm{T}\)
    then \(\sin \left(\frac{1}{x+T}\right)=\sin \left(\frac{1}{x}\right)\)
    \(\Rightarrow \frac{1}{\mathrm{x}+\mathrm{T}}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{1}{\mathrm{x}}\)
    \(\Rightarrow x=\left(x^{2}+T x\right) n \pi+(-1)^{n}(x+T)\)
    \(\Rightarrow T=\frac{x\left(1-(-1)^{n}\right)-x^{2} n \pi}{n \pi x+(-1)^{n}}\)
    Now for a variable \(x\) and constant \(T\) the given relation cannot hold \(\forall\) allowable \(x,\) Hence \(\sin \frac{1}{x}\) is not periodic
    Similarly for \(f(x)=x \cos x\) let \(T\) be the Period
    hence, \((x+T) \cos (x+T)=x \cos x\)
    \(\Rightarrow \mathrm{T} \cos (\mathrm{x}+\mathrm{T})=\mathrm{x}\{\cos \mathrm{x}-\cos (\mathrm{x}+\mathrm{T})\}\)
    \(\Rightarrow \mathrm{T} \cos (\mathrm{x}+\mathrm{T})=2 x \sin \left(x+\frac{T}{2}\right) \sin \frac{T}{2}\)
    \(\Rightarrow \frac{T}{\sin \frac{T}{2}}=\frac{2 x \sin \left(x+\frac{T}{2}\right)}{\cos (x+\mathrm{T})}\)
    Note that LHS is a constant while RHS varies as \(\mathrm{x}\) varies for allowable values of \(\mathrm{x}\), hence no such \(\mathrm{T}\) is possible, so \(\mathrm{x} \cos \mathrm{x}\) is also non-periodic.
    Hence, the correct option is (A)
  • Question 3
    1 / -0
    In triangle \(\Delta \mathrm{ABC}, \mathrm{CD}\) is the bisector of the angle \(\mathrm{C},\) If \(\cos C 2=1 / 3\) and \(\mathrm{CD}=6,\) then the value of \(1 / \mathrm{a}+1 / \mathrm{b}\). Where \(a, b\) and \(c\) are the lengths of the sides opposite to Angles \(a, b \& c\) respectively)
    Solution

  • Question 4
    1 / -0

    The focal chord toy 2 = 16xis tangent to\((x-6)^{2} y^{2}=2\), then the possible values of the slope of this chord, are

    Solution
    Here, the focal chord of \(y^{2}=16 x\) is tangent to circle \((x-6)^{2}+y^{2}=2\)
    \(\Rightarrow\) focus of parabola as \((a, 0)\) i.e (4,0)
    \(\Rightarrow\) centre and radius of circle is (6,0) and \(\sqrt{2}\) respectively
    Thus the equation of focal chord will be
    \((y-0)=m(x-4)\)
    \(m x-y-4 m=0\)
    As this line is tangent to the circle
    \(\therefore \frac{|6 m-4 m|}{\sqrt{m^{2}+1}}=\sqrt{2}\)
    \(\Rightarrow \frac{4 m^{2}}{m^{2}+1}=2\)
    \(4 m^{2}=2 m^{2}+2\)
    \(2 m^{2}=2 \Rightarrow m^{2}=1\)
    \(m=\pm 1\)
    therefore the slope of the focal chord as a tangent to circle \(=\pm 1\)
    Hence, the correct option is (A)
  • Question 5
    1 / -0
    \(A=\left[\begin{array}{ccc}2 & +3 & +-4 \\ +1 & +0 & +6 \\ +-2 & +1 & +5\end{array}\right], B=\left[\begin{array}{ccc}5 & +1 & +2 \\ +6 & +-1 & +4 \\ +5 & +3 & +-4\end{array}\right]\), find \(2 A-3 B\)
    Solution
    \(2 \mathrm{A}-3 \mathrm{B}=2 \mathrm{A}(-3) \mathrm{B}=2\left[\begin{array}{ccc}2 & +3 & +-4 \\ +1 & +0 & +6 \\ +-2 & +1 & +5\end{array}\right]+(-3)\left[\begin{array}{ccc}5 & +1 & +2 \\ +6 & +-1 & +4 \\ +5 & +3 & +-4\end{array}\right]\)
    \(=\left[\begin{array}{cccc}4 & +6 & +-8 \\ +2 & +0 & +12 \\ +-4 & +2 & +10\end{array}\right]+\left[\begin{array}{cccc}-15 & +-3 & +-6 \\ +-18 & +3 & +-12 \\ 4-15 & +6-3 & +-8-6 \\ +2-18 & +0+3 & +12-12 \\ +-4-15 & +2-9 & +10+12\end{array}\right]=\left[\begin{array}{ccc}-11 & +3 & +-14 \\ +-16 & +3 & +0 \\ +-19 & +-7 & +22\end{array}\right]\)
    Hence, the correct option is (A)
  • Question 6
    1 / -0
    If \(f(x)\) is a polynomial satisfying \(f(x) f(1 / x)=f(x) f(1 / x)\) and \(f(2)>1\) then \(\lim _{x \rightarrow 1} f(x)\) is :
    Solution
    \(\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}(1 / \mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{f}(1 / \mathrm{x}), \mathrm{f}(2)>1\)
    let \(\mathrm{f}(\mathrm{x})=\mathrm{a}_{0} \mathrm{x}^{\mathrm{n}}+\mathrm{a}_{1} \mathrm{x}^{\mathrm{n}-1}+\ldots+\mathrm{a}_{\mathrm{n}-1} \mathrm{x}+\mathrm{a}_{\mathrm{n}}, \mathrm{a}_{0} \neq 0\)
    Then by comparing the coefficients of like powers, we get
    \(a_{n}=1, a_{0}^{2}=1, a_{1}=a_{2}=_{-m}=a_{n-1}=0 \therefore \quad f(x)=-x^{n}+1\)
    or \(f(x)=x^{n} 1\)
    Then \(\quad \mathrm{f}(2)>1 f(x)=x^{n}+1\)
    \(\therefore \lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}\left(x^{n} 1\right)=2\)
    Hence, the correct option is (A)
  • Question 7
    1 / -0

    If (1 + x + x2 )25 = a0 + a1 x + a2 x2 + .............a50 x50 then a0 + a2 + a4 + .........+ a50  is --

    Solution
    Putting \(x=1 \&-1 \&\) adding
    \begin{equation*}
    \begin{array}{l}
    \qquad \begin{array}{l}
    a_{0}+a_{2}+\ldots \ldots+a_{50}=\frac{3^{25}+1}{2}=\frac{(1+2)^{25}+1}{2} \\
    =\frac{25 C _{0}+{ }^{25} C _{1} \cdot 2+{ }^{25} C _{2} \cdot 2^{2}+\ldots+{ }^{25} C _{25} \cdot 2^{25}+1}{2}=\frac{2\left[1+{ }^{25} C _{1}+{ }^{25} C _{2} \cdot 2+\ldots+{ }^{25} C _{25} \cdot 2^{24}\right]}{2}
    \end{array} \\
    =2\left[13+25 C _{2}+\ldots \ldots+25 C _{25} \cdot 2^{23}\right] \Rightarrow \text { even }
    \end{array}
    \end{equation*}
    Concepts:
    Main Concept. Summation of Binomial Coefficients(1) The sum of binomial coefficients in the expansion of \((1 x)^{n}\) is \(2^{n}\) \(2^{n}=C_{0} C_{1} C_{2} \ldots . . C_{n}\)
    (2) Sum of binomial coefficients with alternate signs:
    \(C_{0}-C_{1} C_{2}-C_{3-}=0\)
    (3) Sum of the coefficients of the odd terms in the expansion of \((1 x)^{n}\) is equal to sum of the coefficients of even terms and each is equal to \(2^{n-1}\) Hence, the correct option is (D)
  • Question 8
    1 / -0

    If 5a + 4b + 20c = t, then the value of t for which the line ax + by + c - 1 = 0 always passes through a fixed point is

    Solution
    \(a x+b y+c=1\)
    \(\Rightarrow a x+b y+\frac{t-5 a-4 b}{20}=1\)
    \(\Rightarrow 20 a x+20 b y+t-5 a-4 b=20\)
    \(\Rightarrow a(20 x-5)+b(20 y-4)+(t-20)=0\)
    If \(t=20,\) then line passes through \(\left(\frac{1}{4}, \frac{1}{5}\right)\)
    Hence, the correct option is (B)
  • Question 9
    1 / -0
    The area of the curvilinear triangle bounded by the \(y\) -axis \(\&\) the curve \(y=\tan x \& y=2 / 3 \cos x\) is
    Solution

  • Question 10
    1 / -0
    The equation of the pair of straight lines parallel to the \(y\) - axis and which are tangents to the circle \(x^{2}+y^{2}-6 x-4 y\) \(12=0\) is:
    Solution

    Given circle is \(x^{2} y^{2}-6 x-4 y-12=0\)

    \(\Rightarrow(x-3)^{2}+(y-2)^{2}=25=5^{2}\)
    Centre \(=(3,2)\) radius \(=5\)
    If a line parallel to \(y\) -axis, \(x=\lambda\) touches the given circle, then
    \(\Rightarrow \frac{3-\lambda}{\sqrt{1}}=\pm 5 \quad\) (radius)
    \(\Rightarrow 3-\lambda=\pm 5\)
    \(\lambda=3 \pm 5=-2,8\)
    Pair of lines \(\quad(x+2)(x-8)=0\)
    \(\Rightarrow \quad x^{2}-6 x-16=0\)
    Hence, the correct option is (C)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now