Self Studies

Mathematics Test - 34

Result Self Studies

Mathematics Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The value of the sum of the series 3. nC0 - 8 . nC1 + 13 . nC2 - 18 . nC3 + ......upto (n + 1) terms where n>2, is

    Solution
    \(3 .{ }^{n} C_{0}-8 .{ }^{n} C_{1}+13 .{ }^{n} C_{2}-18 .{ }^{n} C_{3}+\ldots \ldots . .\)
    \(\begin{aligned}{=3\left({ }^{n} C_{0}-{ }^{n} C_{1}+{ }^{n} C_{2}-{ }^{n} C_{3}+\ldots \ldots .\right)}{ } &+5\left(-{ }^{n} C_{1}+2 \cdot{ }^{n} C_{2}-3 \cdot{ }^{n} C_{3}+\ldots . .\right) \end{aligned}\)
    \(\because(1-x)^{n}={ }^{n} \mathrm{C}_{0}-{ }^{n} \mathrm{C}_{1} \mathrm{x}+{ }^{n} \mathrm{C}_{2} \mathrm{x}^{2}-{ }^{n} \mathrm{C}_{3} \mathrm{x}^{3}+\ldots \ldots \ldots\)
    and \(-n(1-x)^{n-1}=-{ }^{n} C_{1}+2^{n} C_{2} x-3^{n} C_{3} x^{2}+\ldots \ldots\)
    Putting \(x=1\) in Eqs. (i) \(\&\) (ii), we get
    $$
    { }^{\mathrm{n}} \mathrm{C}_{0}-{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}-{ }^{\mathrm{n}} \mathrm{C}_{3}+\ldots \ldots .=0
    $$
    and \(\quad-{ }^{n} C_{1}+2 \cdot{ }^{n} C_{2}-3 \cdot{ }^{n} C_{3}+\ldots \ldots=0\)
    Hence, \(3 .{ }^{n} C_{0}-8 .{ }^{n} C_{1}+13 .{ }^{n} C_{2}-18 .{ }^{n} C_{3}+\ldots . .=0\)
    Hence, the correct option is (C)
  • Question 2
    1 / -0

    The system x + 4y - 2z = 3, 3x + y + 5z = 7 and 2x + 3y + z = 5 has

    Solution
    Given system of equations are
    $$
    x+4 y-2 z=3
    $$
    and \(3 x+y+5 z=7\)
    $$
    2 x+3 y+z=5
    $$
    \(\therefore \Delta=\left|\begin{array}{ccc}1 & 4 & -2 \\ 3 & 1 & 5 \\ 2 & 3 & 1\end{array}\right|\)
    \(=1(1-15)-4(3-10)-2(9-2)\)
    \(=-14+28-14=0\)
    and \(\Delta_{2}=\left|\begin{array}{ccc}1 & 3 & -2 \\ 3 & 7 & 5 \\ 2 & 5 & 1\end{array}\right|=1 \neq 0\)
    \(\therefore\) No solution will exist.
    Hence, the correct option is (D)
  • Question 3
    1 / -0

    Let \(\int \mathrm{e}^{\mathrm{x}}\left\{f(\mathrm{x})-f^{\prime}(\mathrm{x}) \mathrm{d} \mathrm{x}\right\}=\phi(\mathrm{x})+\mathrm{C}\) Then \(\int \mathrm{e}^{\mathrm{x}} f(\mathrm{x}) \mathrm{d} \mathrm{x}\) is equal to

    Solution
    Here, \(\int \mathrm{e}^{\mathrm{x}}\left\{f(\mathrm{x})-\mathrm{f}^{\prime}(\mathrm{x})\right\} \mathrm{d} \mathrm{x}=\phi(\mathrm{x})+\mathrm{C}\)
    and \(\int \mathrm{e}^{\mathrm{x}}\left\{f(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right\} \mathrm{d} \mathrm{x}=\mathrm{e}^{\mathrm{x}} f(\mathrm{x})+\mathrm{C}\)
    On adding, we get \(2 \int \mathrm{e}^{\mathrm{x}} f(\mathrm{x}) \mathrm{dx}=\phi(\mathrm{x})+\mathrm{e}^{\mathrm{x}} f(\mathrm{x})+\frac{c+c^{\prime}}{k}\)
    \(\int e^{x} f(x) d x=\frac{1}{2}\left(\phi(x)+e^{x} f(x)\right)+k\)
    Hence, the correct option is (C)
  • Question 4
    1 / -0

    \(\operatorname{Letf}_{(x)}=x^{2}-4 x-3, x>2\)and let g(x) be the inverse of f(x). Find the value of g'(2) where f (x) = 2

    Solution
    As \(g(f(x))=x\)
    differentiating \(\left(\because g(x)=f^{-1}(x)\right)\)
    \(g^{\prime}(f(x)) f^{\prime}(x)=1\)
    \(g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}\)
    take \(f(x)=2\)
    \(x^{2}-4 x-3=2\)
    \(x=5, x=-1\)
    \(\because x>2\)
    Hence \(\therefore \quad x=5\)
    \(g^{\prime}(2)=\frac{1}{f^{\prime}(5)}\)
    \(=\frac{1}{(2 x-4)_{x=5}}\)
    \(=\frac{1}{6}\)
    Hence, the correct option is (A)
  • Question 5
    1 / -0

    \(\int_{0}^{1} \frac{\tan ^{-1} x}{x} d x\).

    Solution
    Put \(\tan ^{-1} x=t\)
    \(\Rightarrow x=\tan t \Rightarrow d x=\sec ^{2} d t\)
    \(\therefore \int_{0}^{1} \frac{\tan ^{-1} x}{x} d x=\int_{0}^{\pi / 4} \frac{t}{\tan t} \sec ^{2} t d t\)
    \(=\int_{0}^{\pi / 4} \frac{t}{\sin t} \cdot \cos t \frac{1}{\cos ^{2} t} d t\)
    \(=\int_{0}^{\pi / 4} \frac{t}{\sin t \cos t} d t\)
    \(=2 \int_{0}^{\pi / 4} \frac{t}{\sin 2 t} d t ;\) put \(2 t=p\)
    \(=\int_{0}^{\pi / 2} \frac{p}{\sin p}\left(\frac{1}{2} d p\right)\)
    \(=\frac{1}{2} \int_{0}^{\pi / 2} \frac{x}{\sin x} d x\)
    Hence, the correct option is (A)
  • Question 6
    1 / -0

    Let \(f:[a, b] \rightarrow R\) be a function such that for \(c \in(a, b), f^{\prime}+(c)=f(c)=f(c)=f^{i v}(c)=f^{v}(c)=0\), then :

    Solution

    If even derivative is + ve, then minima and if even derivative is -ve, then maxima.

    But here, \(\mathrm{f}^{\mathrm{vi}}(\mathrm{f}\) is necessarily a constant function) is not given,

    Hence, it is difficult to say maximum or minimum, i.e. (f has local extremum at \(\mathrm{x}=\mathrm{c}\) ) or \((\mathrm{f}\) has neither local maximum nor local minimum at \(x=c\) ).
    Hence, the correct option is (D)

  • Question 7
    1 / -0

    A car  manufacturing company has two plants. Plant P manufactures 70% of cars and plant Q 30%. At plant P 80% of the cars are rated as of standard quality and at plant Q, 90% of the cars are rated as of standard quality. A car is chosen at random and is found to be of standard quality. The chance that it has come from plant P is.

    Solution
    Let \(\mathrm{E}_{\mathrm{i}}(\mathrm{i}=1,2)\) be the event that \(t^{\mathrm{th}}\) plant is selected \(\mathrm{A}\) and the event when a standard quality car is selected.
    $$
    \begin{array}{l}
    \therefore \quad \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{70}{100} \text { and } \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{30}{100} \\
    \text { And } \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{1}\right)=\frac{80}{100} \text { and } \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{2}\right)=\frac{90}{100}
    \end{array}
    $$
    By Bayes' Theorem,
    $$
    \begin{aligned}
    \mathrm{P}\left(\mathrm{E}_{1} / \mathrm{A}\right)=& \frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{2}\right)} \\
    =& \frac{\frac{70}{100} \times \frac{80}{100}}{\frac{70}{100} \times \frac{80}{100}+\frac{30}{100} \times \frac{90}{100}} \\
    =& \frac{5600}{5600+2700}=\frac{56}{83}
    \end{aligned}
    $$
    Hence, the correct option is (A)
  • Question 8
    1 / -0

    The pthderivative of a qthdegree monic polynomial, where p, q are positive integers and 2p4+ 3pq32= 3q32+ 2qp3is given by?

    Solution

    First consider the equation
    2p4+ 3pq32= 3q32+ 2qp3
    After simplification, we get
    (2p3+ 3q12) (p – q) = 0
    This gives us two possibilities
    2p3= – 3q12
    OR
    p = q
    The first possibility can’t be true as we are dealing with positive integers
    Hence, we get
    p = q
    Thus the pthderivative of any monic polynomial of degree p(p = q) is
    p! =q!.

    Hence, the correct option is (C)

  • Question 9
    1 / -0

    The solution of the differential equationis:dy/dx=1+x+y+xy { Where C is an arbitrary constant }

    Solution
    \(\frac{d y}{d x}=(1+x)+(y+x y)\)
    \(=(1+x)+y(1+x)\)
    \(=(1+x)(1+y)\)
    \(\therefore \frac{d y}{1+y}=d x(1+x)\)
    Integrating both sides
    \(\log _{e}|1+y|=\frac{x^{2}}{2}+x+c\)
    Hence, the correct option is (A)
  • Question 10
    1 / -0

    A purse contains 4 copper coins and 3 silver coins the second purse contains 6 copper coins and 2 silver coins. A coin is taken out from any purse. The probability that it is a copper coin is :

    Solution

    Required probability

    12 × 47 + 12 × 68

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now