Self Studies

Mathematics Test - 38

Result Self Studies

Mathematics Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The value of the expression \(x^{2}+\frac{1}{x^{2}+1}\) for \(x \in R\) is

    Solution
    The given expression can be written \(\frac{x^{4}+x^{2}+1}{x^{2}+1}=\frac{x^{4}}{x^{2}+1}+1\)

    Now, for real values of \(x\), the quantity \(x^{4} / x^{2}+1\) is greater than or equal to zero. attaining this value at \(x=0\).

    Therefore,

    \(x^{2}+\frac{1}{x^{2}+1} \geq 1 \quad \forall x \in R\)

    and its minimum value 1 is attained at x = 0.
  • Question 2
    1 / -0
    Let \(A=\left[\begin{array}{ccc}0 & \sin \alpha & \sin \alpha \sin \beta \\ -\sin \alpha & 0 & \cos \alpha \cos \beta \\ -\sin \alpha \sin \beta & -\cos \alpha \cos \beta & 0\end{array}\right]\), then
    Solution
    \(|A|=-\sin \alpha(\sin \alpha \sin \beta \cos \alpha \cos \beta)+\sin \alpha \sin \beta\)
    \((\sin \alpha \cos \alpha \cos \beta)\)
    \(=-\sin ^{2} \alpha \sin \beta \cos \alpha \cos \beta+\sin ^{2} \alpha \sin \beta \cos \alpha \cos \beta\)
    \(=0\)
    \(\because|A|=0 \Rightarrow A^{-1}\) does not exists.
  • Question 3
    1 / -0

    Six numbers are in AP such that their sum is 3. The first term is 4 times the third term. Then, the fifth term is

    Solution
    Let the numbers be \(a-5 d, a-3 d, a-d, a+d, a+3 d, a+5 d\)
    \(\therefore a-5 d+a-3 d+a-d+a+d+a+3 d+a+5 d=3(\because S u m=3)\)
    \(\Rightarrow 6 a=3 \Rightarrow a=\frac{1}{2}\)
    Also, given \(T_{1}=4 T_{3}\), where \(T_{1}, T_{3}\) are respectively, first and third terms of AP. \(\Rightarrow a-5 d=4(a-d)\)
    \(\Rightarrow d=-3 a=-\frac{3}{2}\)
    \(\therefore\) The fifth term \(a+3 d=\frac{1}{2}+3\left(-\frac{3}{2}\right)=\frac{1}{2}-\frac{9}{2}=-4\)
  • Question 4
    1 / -0

    If |a|,|b|,|c|<1 and a,b,cϵA.P. then (1+a+a2+...∞),(1+b+b2+...∞),(1+c+c2+...∞) are in

    Solution
    Consider the terms
    \(\left(1+a+a^{2}+\ldots \infty\right),\left(1+b+b^{2}+\ldots \infty\right),\left(1+c+c^{2}+\ldots \infty\right)\)
    Using the property for sum of an infinite G.p., we get \(1+a+a^{2}+a^{3}+\ldots \infty=\frac{1}{1-a}\)
    \(1+b+b^{2}+b^{3}+\ldots \infty=\frac{1}{1-b}\)
    \(\operatorname{and} 1+c+c^{2}+\ldots . \infty=\frac{1}{1-c}\)
    Given that, \(a, b, c\) are in \(\mathrm{A}\). P. \(\Rightarrow 1-a, 1-b, 1-c\) are in \(\mathrm{A} . P\)
    \(\Rightarrow \frac{1}{1-a}, \frac{1}{1-b}, \frac{1}{1-c}\) are in \(\mathrm{H.P}\)
    Therefore, \(\left(1+a+a^{2}+\ldots \infty\right),\left(1+b+b^{2}+\ldots \infty\right),\left(1+c+c^{2}+\ldots \infty\right)\) are in
    H.P.
  • Question 5
    1 / -0

    Suppose a, b, c are in AP and a2,b2,c2 are in GP and a

    Solution
    Given a, b,c are in A.P then \(2 b=a+c\) but \(a+b+c=\frac{3}{2}\)
    \(\Rightarrow 3 b=\frac{3}{2} \Rightarrow b=\frac{1}{2}\)
    Let the common difference of the A.P. be \(d\). Now, \(a^{2}, b^{2}, c^{2}\) are in G.P \(\Rightarrow(b-d)^{2}, b^{2},(b+d)^{2}\) are in G.P
    \(\Rightarrow b^{4}=(b-d)^{2}(b+d)^{2}\)
    \(=\{(b-d)(b+d)\}^{2}=\left(b^{2}-d^{2}\right)^{2}\)
    \(\Rightarrow\left(b^{2}-d^{2}\right)=\pm b^{2}\)
    Now since +ve sign will give \(d=0\) so we will take -ve sign. hence \(\left(b^{2}-d^{2}\right)=-b^{2}\)
    \(\Rightarrow 2 b^{2}=d^{2}\)
    \(\Rightarrow d=\pm b \sqrt{2}\)
    Putting the value of \(b\) \(d=\pm \frac{1}{\sqrt{2}}\)
    since \(a, b\) and \(c\) are in increasing order according to question. So, we will take +ve sign in \(d\) Hence \(a=b-d=\frac{1}{2}-\frac{1}{\sqrt{2}}\)
    hence the correct option is \(D\).
  • Question 6
    1 / -0

    If a1,a2,a3... are positive numbers in GP then logan,logan+1,logan+2 are in

    Solution
    since, \(a_{1}, a_{2}, a_{3}, \ldots .\) are in G.P. Let \(a\) and \(r\) be the first term and common ratio respectively \(\Rightarrow \log a_{n}=\log a+n \log r\)
    \(\log a_{n+1}=\log a+(n+1) \log r \quad \ldots(2)\)
    and \(\log a_{n+2}=\log a+(n+2) \log r \quad \ldots(3)\)
    From ( 1\(),(2)\) and (3) \(2 \log a_{n+1}=\log a_{n}+\log a_{n+2}\)
    Therefore, \(\log a_{n}, \log a_{n+1}, \log a_{n+2}\) are in A.P.
  • Question 7
    1 / -0

    The value of x for which log3(21−x+3),log94 and log27(2x−1)3 form an A.P. is

    Solution
    Condition for \(A . P .\) is: \(2 b=a+c\) \(\Rightarrow 2 \log _{9} 4=\log _{3}\left(2^{1-x}+3\right)+\log _{27}\left(2^{x}+1\right)^{3}\)
    \(\Rightarrow 2 \frac{\log 4}{\log 9}=\log _{3}\left(2^{1-x}+3\right)+3 \frac{\log \left(2^{x}+1\right)}{\log 27}\)
    \(\Rightarrow 2 \frac{\log _{3} 4}{2 \log _{3} 3}=\log _{3}\left(2^{1-x}+3\right)+3 \frac{\log _{3}\left(2^{x}+1\right)}{3 \log _{3} 3}\)
    \(\Rightarrow \frac{2}{2} \log _{3} 4=\log _{3}\left(2^{1-x}+3\right)+\frac{3}{3} \log _{3}\left(2^{x}-1\right)\)
    \(\Rightarrow \frac{2}{2} \log 4=\log \left(2^{1-x}+3\right)+\frac{3}{3} \log \left(2^{x}-1\right)\)
    \(\Rightarrow \log 4=\log \left[\left(2^{1-x}+3\right)\left(2^{x}-1\right)\right]\)
    \(\therefore 4=\left(\frac{2}{y}+3\right)(y-1),\) where \(y=2^{x}\)
    \(\therefore 4 y=(3 y+2)(y-1)\) or \(3 y^{2}-5 y-2=0\)
    \(\therefore y=2,-\frac{1}{3}=2^{x}\)
    since an exponential function cannot be \(-\)ve, \(\therefore 2^{x}=-\frac{1}{3}\) is rejected
    \(\therefore 2^{x}=2 \Rightarrow x=1\)
  • Question 8
    1 / -0

    Find the sum of the first 5 terms of an arithmetic progression in which the 6th term is 14 and the 11th term is 22.

    Solution
    Let ' \(a\) ' is the first term and 'd' is the common difference between the given AP According to the question \(6^{t h}\) term is 14 \(\Rightarrow a+(6-1) d=14\)
    \(\Rightarrow a+5 d=14 \ldots \ldots e q(1)\)
    and \(11^{t h}\) term is 22 .
    \(\Rightarrow a+(11-1) d=22\)
    \(\Rightarrow a+10 d=22 \ldots . . e q(2)\)
    Subtract eq (i) from eq ( 2 ), we get \(\Rightarrow-5 d=-8\)
    \(\Rightarrow d=\frac{8}{5}\)
    Substitute the value of \(d\) in eq (1) \(\Rightarrow a+5 \times \frac{8}{5}=14\)
    \(\Rightarrow a=14-8\)
    \(\Rightarrow a=6\)
    Sum of first \(n\) terms of \(A P=S_{n}=\frac{n}{2}[2 a+(n-1) d]\) \(\therefore S_{5}=\frac{5}{2}\left[2 \times 6+(5-1) \frac{8}{5}\right]\)
    \(\Rightarrow S_{5}=\frac{5}{2}\left[2 \times 6+4 \times \frac{8}{5}\right]\)
    \(\Rightarrow S_{5}=\frac{5}{2}\left[12+\frac{32}{5}\right]\)
    \(\Rightarrow S_{5}=\frac{5}{2}\left[\frac{60+32}{5}\right]\)
    \(\Rightarrow S_{5}=\frac{5}{2} \times \frac{92}{5}=46\)
  • Question 9
    1 / -0

    There is a sequence of 4 positive integer terms, the first three are in AP. the last three arein G. P. where the 4th term exceeds the first term by 30, then the sum of all the terms is

    Solution
    Let \(a-d, a, a+d, a-d+30\) be the sequence of 4 positive integer terms. Given that the last three terms are in G.P. That is, \(a, a+d, a-d+30\) are in G.P. \(\Rightarrow(a+d)^{2}=a(a-d+30)\)
    \(\Rightarrow a^{2}+2 a d+d^{2}=a^{2}-a d+30 a\)
    \(\Rightarrow 3 a d=30 a-d^{2}\)
    \(\Rightarrow 3 a=\frac{d^{2}}{10-d}\)
    Therefore, R.H.S should be a multiple of \(3 .\) Now, For \(d=3,\) R.H.S is \(\frac{9}{7} ;\) which is not a multiple of \(3 .\) Also, for \(d=6, \mathrm{R} . \mathrm{H.S}\) is \(9 .\) \(\Rightarrow a=3 ;\) but in this case \(a-d\) is negative, which is not possible. Now, for \(d=9,\) R.H.S is 81 . \(\Rightarrow a=27\)
    since \(d=12\) and afterwards make \(\mathrm{R}\).H.S as negative. Therefore, \(a=27\) and \(d=9\). Thus, the numbers are 18,27,36,48 . Hence, the sum of 18,27,36,48 is \(129 .\)
  • Question 10
    1 / -0

    If a,b,c are in A.P as well as in G.P, then

    Solution
    Given \(a, b, c\) are in A.P. \(\Rightarrow 2 b=a+c \rightarrow(1)\)
    \(\Rightarrow(2 b)^{2}=(a+c)^{2}\)
    \(\Rightarrow 4 b^{2}=a^{2}+2 a c+c^{2} \rightarrow(2)\)
    Also, given that \(a, b, c\) are in G.P. \(\Rightarrow b^{2}=a c \rightarrow(3)\)
    Now, substitute ( 3 ) in (2) we get \(4 a c=a^{2}+2 a c+c^{2}\)
    \(\Rightarrow a^{2}+c^{2}-2 a c=0\)
    \(\Rightarrow(a-c)^{2}=0\)
    \(\Rightarrow(a-c)=0\)
    \(\Rightarrow a=c \quad \ldots(4)\)
    Now, substitute (4) in (1)\(;\) we get \(2 b=a+a=c+c\)
    \(\Rightarrow 2 b=2 a=2 c\)
    \(\Rightarrow a=b=c\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now