Self Studies

Mathematics Test - 39

Result Self Studies

Mathematics Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let \(f(x)=e^{(x-1)}-a x^{2}+b \& g(x)=\left[\begin{array}{ll}e^{x-1} & \text { for } x \leq 1 \\ x^{2}+1 & \text { for } x>1\end{array}\right.\) with \(f^{\prime}(1)=2 \cdot\) The values of a and \(b\) for which the function \(h(x)=f(x) \cdot g(x),\) is differentiable at \(x=1,\) are respectively

    Solution
    \(f(x)=e^{(x-1)}-a x^{2}+b\)
    \(\Rightarrow f^{\prime}(x)=e^{(x-1)}-2 a x\)
    \(\Rightarrow f^{\prime}(1)=e^{0}-2 a=1-2 a\)
    \(\therefore f^{\prime}(1)=2 \Rightarrow 1-2 \mathrm{a}=2 \Rightarrow \mathrm{a}=-\frac{1}{2}\)
    \(\therefore f(x)=e^{(x-1)}+\frac{x^{2}}{2}+b\)
    \(\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}) \Rightarrow \mathrm{h}(\mathrm{x})=\left(\mathrm{e}^{(\mathrm{x}-1)}+\frac{\mathrm{x}^{2}}{2}+\mathrm{b} \mathrm{e}^{(\mathrm{x}-1)}, \mathrm{x} \leq 1\right.\)
    \(=\left(e^{(x-1)}+\frac{x^{2}}{2}+b\right)\left(x^{2}+1\right) x>1\)
    For \(\mathrm{h}(\mathrm{x})\) to be differentiable at \(\mathrm{x}=1\) it must be continuous at \(\mathrm{x}=1\)
    \(\therefore \lim _{h \rightarrow 0} h(1-h)=\lim _{h \rightarrow 0} h(1+h)=h(1)\)
    \(\therefore \lim _{h \rightarrow 0} h(1-h)=\lim _{h \rightarrow 0} h(1+h)=h(1)\)
    \(\Rightarrow\left(e^{0}+\frac{1}{2}+b\right) e^{0}=\left(e^{0}+\frac{1}{2}+b\right)(2)=\left(e^{0}+\frac{1}{2}+b\right) e^{0}\)
    \(\Rightarrow b+\frac{3}{2}=2\left(b+\frac{3}{2}\right) \Rightarrow b+\frac{3}{2}=0 \Rightarrow b=-\frac{3}{2}\)
    \(\therefore h(x)=\left(e^{x-1}+\frac{x^{2}}{2}-\frac{3}{2}\right) e^{x-1}, x \leq 1\)
    \(=\left(e^{x-1}+\frac{x^{2}}{2}-\frac{3}{2}\right)\left(x^{2}+1\right), x>1\)
    \(h^{\prime}(x)=\left(e^{x-1}+\frac{x^{2}}{2}-\frac{3}{2}\right) e^{(x-1)}+e^{(x-1)}\left(e^{x-1}+x\right), x<1\)
    \(h^{\prime}(\mathrm{x})=\varphi, \mathrm{x}=1\)
    \(h^{\prime}(x)=\left(e^{x-1}+\frac{x^{2}}{2}-\frac{3}{2}\right) 2 x+\left(x^{2}+1\right)\left(e^{x-1}+x\right), x>1\)
    \(\left(\because h^{\prime}(1-)=2 \& h^{\prime}(1+)=4\right.\) therefore \(\left.h^{\prime}(1)=\varphi\right)\)
    Hence there are no value of a \(\& \mathrm{b}\) for which \(\mathrm{h}(\mathrm{x})\) is differentiable at \(\mathrm{x}=1\)
  • Question 2
    1 / -0

    The function \(f(x)=\frac{\log _{e}(\pi+x)}{\log _{e}(e+x)}\) is

    Solution
    \(f(x)=\frac{\ln (\pi+x)}{\ln (e+x)}\)
    \(f^{\prime}(x)=\left[\frac{\ln (e+x)}{(\pi+x)}-\frac{\ln (\pi+x)}{(e+x)}\right] \times \frac{1}{(\ln (e+x))^{2}}\)
    \(=\frac{(e+x) \ln (e+x)-(\pi+x) \ln (\pi+x)}{(\pi+x)(e+x)(\ln (e+x))^{2}}\)
    \(\Rightarrow\) But \(e<\pi\)
    \(\Rightarrow(e+x)<(\pi+x) \forall x \in R\)
    \(\Rightarrow \ln (e+x)<\ln (\pi+x),\) provided \(e+x>0 \& \pi+x>0\)
    \(\Rightarrow(e+x) \ln (e+x)<(\pi+x) \ln (\pi+x)\) for \(x \in(-e, \infty)\)
    \(\Rightarrow(e+x) \ln (e+x)-(\pi+x) \ln (\pi+x)<0\) for \(x \in(-e, \infty)\)
    \(\Rightarrow f^{\prime}(x)<0 \forall x \in(-e, \infty)\)
    \(\Rightarrow f^{\prime}(x)<0 \forall x \in(0, \infty)\)
  • Question 3
    1 / -0

    \(\int x^{\mathrm{x}^{2}}\left(2 \mathrm{x} \log _{\mathrm{e}} \mathrm{x}+\mathrm{x}\right) \mathrm{dx}\) is equal

    Solution
    \(I=\int x^{x^{2}}\left(2 x \log _{e} x+x\right) d x\)
    Let \(x^{\mathrm{x}^{2}}=t\)
    Take loge on both sides of the equation \(\Rightarrow \ln t=x^{2} \ln x\)
    \(\Rightarrow \frac{1}{t} \frac{d t}{d x}=x^{2} \frac{1}{x}+2 x \ln x\)
    \(\Rightarrow \frac{1}{t} \mathrm{dt}=(\mathrm{x}+2 \mathrm{x} \ln \mathrm{x}) \mathrm{dx}\)
    \(\therefore I=\int t \frac{1}{t} d t=\int d t=t+C\)
    \(x^{\mathrm{x}^{2}}+\mathrm{C}\)
  • Question 4
    1 / -0

    The value of the definite integral \(\int_{0}^{1} \frac{d x}{\left(x^{2}+2 x \cos \alpha+1\right)}\) for \(0<\alpha<\pi,\) equal to

    Solution
    \(I=\int_{0}^{1} \frac{d x}{x^{2}+2 x \cos \alpha+1}=\int_{0}^{1} \frac{d x}{(x+\cos \alpha)^{2}+\sin ^{2} \alpha}\)
    \(=\frac{1}{\sin \alpha}\left[\tan ^{-}\left(\frac{x+\cos \alpha}{\sin \alpha}\right)\right]_{0}^{1}\)
    \(=\frac{1}{\sin \alpha}\left[\tan ^{-1}\left(\frac{1+\cos \alpha}{\sin \alpha}\right)-\tan ^{-1}\left(\frac{\cos \alpha}{\sin \alpha}\right)\right]\)
    \(=\frac{1}{\sin \alpha}\left[\tan ^{-1} \cot \alpha / 2-\tan ^{-1} \cot \alpha\right]\)
    \(=\frac{1}{\sin \alpha}\left[\left(\frac{\pi}{2}-\frac{\alpha}{2}\right)-\left(\frac{\pi}{2}-\alpha\right)\right]=\frac{\alpha}{2 \sin \alpha}\)
  • Question 5
    1 / -0

    The solution to \(\frac{d y}{d x}+\frac{\tan y}{x}=\frac{1}{x^{2}} \tan y \sin y\) is :

    Solution
    \(\frac{d y}{d x}+\frac{\tan y}{x}=\frac{1}{x^{2}} \tan y \cdot \sin y\)
    \(\Rightarrow \cos \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}+\left(\frac{1}{\mathrm{x}}\right) \sin \mathrm{y}=\frac{1}{\mathrm{x}^{2}}(\sin \mathrm{y})^{2},\) put \(\sin \mathrm{y}=\mathrm{z}\)
    \(\Rightarrow \frac{d z}{d x}+\left(\frac{1}{x}\right) z=\left(\frac{1}{x^{2}}\right) z^{2}\)
    \(\Rightarrow \frac{1}{z^{2}} \frac{d z}{d x}+\left(\frac{1}{x}\right)\left(\frac{1}{z}\right)=\frac{1}{x^{2}}\)
    Let \(\frac{1}{z^{2}} \frac{d z}{d x}=\frac{d R}{d x} \Rightarrow \int \frac{d z}{z^{2}}=\int d R \Rightarrow R=\frac{-1}{z}\)
    \(\Rightarrow \frac{d R}{d x}+\left(\frac{1}{x}\right)(-R)=\frac{1}{x^{2}}, \quad I=e^{\int-\frac{1}{x} d x}=\frac{1}{x}\)
    \(\Rightarrow \frac{1}{x} \frac{d R}{d x}+\left(-\frac{1}{x^{2}}\right) R=\frac{1}{x^{3}}\)
    \(\Rightarrow \int \mathrm{d}\left(\frac{\mathrm{R}}{\mathrm{x}}\right)=\int \frac{\mathrm{dx}}{\mathrm{x}^{3}} \Rightarrow \frac{\mathrm{R}}{\mathrm{x}}=\frac{-1}{2 \mathrm{x}^{2}}+\mathrm{C}\)
    \(\Rightarrow \frac{-1}{(\sin y) x}=\frac{-1}{2 x^{2}}+C \Rightarrow \frac{1}{x}\left[\frac{1}{2 x}-\frac{1}{\sin y}\right]=C\)
  • Question 6
    1 / -0

    In a triangle ABC, the angle B is greater than angle A . If the values of the angle A and B satisfy the equation \(3 \sin x-4 \sin ^{3} x-k=0\), 0 < k < 1, then value of C is

    Solution
    \(\sin 3 x=k\) is satisfied by \(A \& B\)
    \(\Rightarrow \sin 3 A=k \& \sin 3 B=k\)
    \(\Rightarrow \sin 3 A=\sin 3 B \Rightarrow 3 A=3 B\) or \(3 A=\pi-3 B\)
    But \(3 \mathrm{A}=3 \mathrm{B}\) rejected \((\because \mathrm{B}>\mathrm{A})\)
    \(\Rightarrow 3 \mathrm{A}=\pi-3 \mathrm{B} \Rightarrow \mathrm{A}+\mathrm{B}=\frac{\pi}{3} \Rightarrow \mathrm{C}=\frac{2 \pi}{3}\)
  • Question 7
    1 / -0

    Coordinates of the orthocentre of the triangle whose sides are x=3, y=4 and 3x+4y=6, will be:

    Solution

    Sides of a triangle ABC are given byx=3, y=4 and 3x+4y=6,. It forms a right angle triangle ABC with B(3,4)as right angle.

    Hence B is the orthocentre as perpendiculars drawn from A and C meet at B.

  • Question 8
    1 / -0

    The area bounded by the curves \(x+2|y|=1\) and \(x=0\) is:

    Solution

  • Question 9
    1 / -0

    none of these equation of the hyperbola whose foci are (6,5), (-4,5)and eccentricity 54 is

    Solution

    Center of the hyperbola is the mid-point of the line segment joining two foci. Therefore, coordinates of the center are (1,5). Also since the foci have same y coordinate therefore the line joining foci is parallel to x-axis. Hence the transverse axis is parallel to x-axis. Clearly the\(\frac{(x-1)^{2}}{a^{2}}-\frac{(y-5)^{2}}{b^{2}}=1\)

    Again the distance between the foci \(=10\)

    \(\Rightarrow 2\) ae \(=10 \Rightarrow\) ae \(=5\)

    \(\Rightarrow a=4\)

    \(\therefore b^{2}=a^{2}\left(e^{2}-1\right) \Rightarrow b=3\)

    Hence, the equation of the hyperbola is

    \(\frac{(x-1)^{2}}{16}-\frac{(y-5)^{2}}{9}=1\)

  • Question 10
    1 / -0

    An equilateral triangle is inscribed in the parabola y2=4axwhose vertex is at the vertex of the parabola. The length of its side is

    Solution

    \(\left(\cos 30^{\circ},\left(\sin 30^{\circ}\right)\right.\)

    \(\equiv\left(\left(\frac{\sqrt{3}}{2}, \frac{l}{2}\right)\right.\) lies on \(y^{2}=4 a x\)

    Thus, the point will satisfy the equation of the parabola \(\left(\frac{l}{2}\right)^{2}=4 a\left(\frac{l \sqrt{3}}{2}\right)\)

    \(\therefore C=8 \mathrm{a} \sqrt{3}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now