\(f(x)=e^{(x-1)}-a x^{2}+b\)
\(\Rightarrow f^{\prime}(x)=e^{(x-1)}-2 a x\)
\(\Rightarrow f^{\prime}(1)=e^{0}-2 a=1-2 a\)
\(\therefore f^{\prime}(1)=2 \Rightarrow 1-2 \mathrm{a}=2 \Rightarrow \mathrm{a}=-\frac{1}{2}\)
\(\therefore f(x)=e^{(x-1)}+\frac{x^{2}}{2}+b\)
\(\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}) \Rightarrow \mathrm{h}(\mathrm{x})=\left(\mathrm{e}^{(\mathrm{x}-1)}+\frac{\mathrm{x}^{2}}{2}+\mathrm{b} \mathrm{e}^{(\mathrm{x}-1)}, \mathrm{x} \leq 1\right.\)
\(=\left(e^{(x-1)}+\frac{x^{2}}{2}+b\right)\left(x^{2}+1\right) x>1\)
For \(\mathrm{h}(\mathrm{x})\) to be differentiable at \(\mathrm{x}=1\) it must be continuous at \(\mathrm{x}=1\)
\(\therefore \lim _{h \rightarrow 0} h(1-h)=\lim _{h \rightarrow 0} h(1+h)=h(1)\)
\(\therefore \lim _{h \rightarrow 0} h(1-h)=\lim _{h \rightarrow 0} h(1+h)=h(1)\)
\(\Rightarrow\left(e^{0}+\frac{1}{2}+b\right) e^{0}=\left(e^{0}+\frac{1}{2}+b\right)(2)=\left(e^{0}+\frac{1}{2}+b\right) e^{0}\)
\(\Rightarrow b+\frac{3}{2}=2\left(b+\frac{3}{2}\right) \Rightarrow b+\frac{3}{2}=0 \Rightarrow b=-\frac{3}{2}\)
\(\therefore h(x)=\left(e^{x-1}+\frac{x^{2}}{2}-\frac{3}{2}\right) e^{x-1}, x \leq 1\)
\(=\left(e^{x-1}+\frac{x^{2}}{2}-\frac{3}{2}\right)\left(x^{2}+1\right), x>1\)
\(h^{\prime}(x)=\left(e^{x-1}+\frac{x^{2}}{2}-\frac{3}{2}\right) e^{(x-1)}+e^{(x-1)}\left(e^{x-1}+x\right), x<1\)
\(h^{\prime}(\mathrm{x})=\varphi, \mathrm{x}=1\)
\(h^{\prime}(x)=\left(e^{x-1}+\frac{x^{2}}{2}-\frac{3}{2}\right) 2 x+\left(x^{2}+1\right)\left(e^{x-1}+x\right), x>1\)
\(\left(\because h^{\prime}(1-)=2 \& h^{\prime}(1+)=4\right.\) therefore \(\left.h^{\prime}(1)=\varphi\right)\)
Hence there are no value of a \(\& \mathrm{b}\) for which \(\mathrm{h}(\mathrm{x})\) is differentiable at \(\mathrm{x}=1\)