Self Studies

Mathematics Test - 4

Result Self Studies

Mathematics Test - 4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Sum to the infinity of the series \(\frac{3}{4}-\frac{5}{4^{2}}+\frac{3}{4^{3}}-\frac{5}{4^{4}}+\frac{3}{4^{5}}-\frac{5}{4^{6}}+\ldots .\) is
    Solution

    \begin{equation}\begin{array}{l}
    \text { We have } \frac{3}{4}-\frac{5}{4^{2}}+\frac{3}{4^{3}}-\frac{5}{4^{4}}+\frac{3}{4^{5}}-\frac{5}{4^{6}}+\ldots \\
    \text { Sum }=\left(\frac{3}{4}+\frac{3}{4^{3}}+\frac{3}{4^{5}}+\ldots . to \times 0\right)-\left(\frac{5}{4^{2}}+\frac{5}{4^{4}}+\frac{5}{4^{6}}+\ldots t 0 \infty\right) \\
    =\frac{3}{1-\left(\frac{1}{4}\right)^{2}-\frac{5}{4^{2}}}{1-\left(\frac{1}{4}\right)^{2}} \\
    =\frac{3}{4} \times \frac{16}{15}-\frac{5}{16} \times \frac{16}{15}=\frac{7}{15}
    \end{array}\end{equation}

    Hence option A is correct.
  • Question 2
    1 / -0

    Two vertical poles AL and BM of heights 20 m and 80 m respectively stand apart on a horizontal plane. If A and B be the feet of the poles and AM and BL intersect at P, then the height of P is equal to

    Solution

    \(\frac{20}{x+y}=\frac{z}{y} \Rightarrow y=\frac{z(x+y)}{20} \)
    \(\frac{80}{x+y}=\frac{z}{x} \Rightarrow x=\frac{z(x+y)}{80} \)
    \(\therefore x+y=(x+y)\left(\frac{z}{20}+\frac{z}{80}\right) \)
    \(\Rightarrow z=16 m\)
    Hence option C is correct.
  • Question 3
    1 / -0

    Two tangents are drawn from a point P to the parabola y2 = 4x such that the slope of one tangent is 5 times the slope of the other. The locus of P is-

    Solution

    Let any point \(P=(a, \beta)\). Any tangent to the parabola is \(y=m x+1 / m\) and if it passes through \((a, \beta)\) Then, \(\beta=m \alpha+\frac{1}{m}\)
    \(\Rightarrow m ^{2} \alpha- m \beta+1=0\)
    Its roots are \(m _{1}, Sm _{1}\). So \(m _{1+} Sm _{1}= B / a\)
    and \(m _{1} \cdot Sm _{1}=1 / a\)
    \(\Rightarrow 5\left(\frac{\beta}{b \alpha}\right)^{2}=\frac{1}{\alpha}\)
    \(\Rightarrow 5 \beta^{2}=36 \alpha\)
    Thus the locus is \(5 y^{2}=36 x,\) which is a parabola.

    Hence option A is correct.
  • Question 4
    1 / -0
    If the sides of a triangle are in the ratio \(1: \sqrt{3}: 2,\) then the angles of the triangle are in the ratio:
    Solution

    Sides are in the ratio \(1: \sqrt{3}: 2\),
    Let a \(=k, b=\sqrt{3} k, c=2 k\)
    \(\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{3 k^{2}+4 k^{2}-k^{2}}{2 \cdot \sqrt{3} k \cdot 2 k}=\frac{\sqrt{3}}{2}\)
    \(A=\frac{\pi}{6}\)
    \(\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}=\frac{k^{2}+4 k^{2}-3 k^{2}}{2 \cdot k \cdot 2 k}=\frac{1}{2}\)
    \(B=\frac{\pi}{3}\)
    \(C=\pi-(A+B)=\frac{\pi}{2}\)

    Hence option D is correct.
  • Question 5
    1 / -0
    \begin{equation}\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{\frac{2}{z}}(a>0, b>0, c>0) \text { is }\end{equation}
    Solution

    Limit is of the form \(1^{\infty},\) so we have
    \(\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{\frac{2}{x}}\)
    \(=\lim _{e^{x} \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}}{3}-1\right) \frac{2}{x}\)
    Now, \(\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}}{3}-1\right) \frac{2}{x}\)
    \(=\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}-3}{3 x}\right)^{2}\)
    \(=\lim _{x \rightarrow 0}\left(\frac{a^{x}-1}{x}+\frac{b^{x}-1}{x}+\frac{c^{x}-1}{x}\right) \frac{2}{3}\)
    \(=\left\{\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}+\lim _{x \rightarrow 0} \frac{b^{x}-1}{x}+\lim _{x \rightarrow 0} \frac{c^{x}-1}{x}\right\} \frac{2}{3}\)
    \(=(\ln a+\ln b+\ln c) 2 / 3\)
    \(=2 / 3(\ln abc )\)
    \(\therefore\) Desired limit \(=e^{\frac{2}{3} \ln a b c}=e^{\ln (a b c)^{2 / 3}}=(a b c)^{2 / 3}\)

    Hence option C is correct.
  • Question 6
    1 / -0

    The area of the region bounded by the curves y=x2, y=|2-x2 |, which lies to the right of the line x = 1/2, is

    Solution

    \(y=x^{2}, y=\left|x^{2}-2\right|\)

    Shaded area \(=\int_{1 / 2}^{1}\left(2-x^{2}-x^{2}\right) d x\)
    \(=\int_{1 / 2}^{1}\left(2-2 x^{2}\right) d x\)
    \(=2 \int_{1 / 2}^{1}\left(1-x^{2}\right) d x\)
    \(=2\left[x-\frac{x^{3}}{3}\right]_{1 / 2}^{1}\)
    \(=\frac{5}{12}\) Square units
    Hence option D is correct.
  • Question 7
    1 / -0
    Find the solution of the differential equation \(\frac{d y}{d x}=\frac{y}{2 y \ln y+y-x}\)
    given that \(y=4\) at \(x=3\)
    Solution

    \(\frac{d y}{d x}=\frac{y}{2 y \ln y+y-x}\)
    \(\Rightarrow \frac{d x}{d y}=2 \ln y+1-\frac{x}{y}\)
    \(\Rightarrow \frac{d x}{d y}+\frac{x}{y}=2 \ln y+1\)
    \(I F=e^{\int \frac{1}{y} d y}=e^{\ln y}=y\)
    \(\Rightarrow d(x y)=(2 y \ln y+y) d y\)
    Integrating both sides
    \(\Rightarrow \int d(x y)=\int(2 y \ln y+y) d y\)
    \(\Rightarrow x y=y^{2} \ln y-\frac{y^{2}}{2}+\frac{y^{2}}{2}+C\)
    \(\Rightarrow x y=y^{2} \ln y+C\)
    \(\Rightarrow\) Putting \(x =3\) and \(y =4,\) we get
    \(\Rightarrow 12=16 \ln 4+C\)
    \(\Rightarrow C=12-32 \ln 2\)
    \(\Rightarrow\) Thus we get the solution as
    \(\Rightarrow x y=y^{2} \ln y+12-32 \ln 2\)

    Hence option B is correct.
  • Question 8
    1 / -0
    \begin{equation}\text { The value of } \sum_{r=1}^{89} \log _{10} . \tan \frac{\pi r}{180} \quad \text { is equal to }\end{equation}
    Solution

    \begin{equation}\begin{array}{l}
    \text { Let } y=\sum_{r=1}^{89} \log _{10} \tan \frac{\pi r}{180} \\
    \Rightarrow y=\log _{10}\left[\prod_{r=1}^{89} \tan \frac{\pi r}{180}\right] \\
    \Rightarrow y=\log _{10}\left[\tan \frac{\pi}{180} \tan \frac{2 \pi}{180} \tan \frac{3 \pi}{180} \ldots \ldots \tan \frac{87 \pi}{180} \tan \frac{88 \pi}{180} \tan \frac{89 \pi}{180}\right] \\
    \Rightarrow y=\log _{10}\left[\tan \frac{\pi}{180} \tan \frac{2 \pi}{180} \tan \frac{3 \pi}{180} \ldots \ldots \cot \left(\frac{\pi}{2}-\frac{87 \pi}{180}\right) \cot \left(\frac{\pi}{2}-\frac{88 \pi}{180}\right) \cot \left(\frac{\pi}{2}-\frac{89 \pi}{180}\right)\right] \\
    \Rightarrow y=\log _{10}\left[\tan \frac{\pi}{180} \tan \frac{2 \pi}{180} \tan \frac{3 \pi}{180} \ldots \ldots \cot \frac{3 \pi}{180} \cot \frac{2 \pi}{180} \cot \frac{\pi}{180}\right] \\
    \Rightarrow y=\log _{10} 1=0 \\\end{array}\end{equation}

    Hence option C is correct.
  • Question 9
    1 / -0
    \begin{equation}If (4)^{\log _{9} 3}+(9)^{\log _{2} 4}=(10)^{\log _{ x } 83}, \text { then the value of } x \text { is equal to }\end{equation}
    Solution

    \((4)^{\log _{9} 3}+(9)^{\log _{2} 4}=(10)^{\log _{x} 83}\)
    Taking L.H.S.
    \((4)^{\log _{9} 3}+(9)^{\log _{2} 4}\)
    \(=2^{2 \log _{9} 3}+3^{2 \log _{2} 4}\)
    \(=2^{\log _{9} 9}+3^{2 \log _{2} 2^{2}}\)
    \(=2^{\log _{9} 9}+3^{4 \log _{2} 2}\)
    \(=2^{1}+3^{4}\left(\because \log _{a} a=1\right)\)
    \(=2+81=83\)
    Taking \(L . H . S=R . H . S\)
    \(83=10^{\log _{x} 83}=83^{\log _{x} 10},\left(\because a^{\log _{x} y}=y^{\log _{x} a}\right)\)
    \(\Rightarrow \log _{x} 10=1\)
    \(\therefore x=10^{1}=10\)

    Hence option C is correct.
  • Question 10
    1 / -0
    \begin{equation}\text { If } \sqrt{\log _{2} x}-0.5=\log _{2} \sqrt{x} \quad \text { , then } x \text { is equal to }\end{equation}
    Solution

    \(\sqrt{\log _{2} x}=0.5+\log _{2} \sqrt{x}\)
    where \(x>0\) and \(\log _{2} x>0\)
    \(\Rightarrow x>1\)
    We have, \(\sqrt{\log _{2} x}=0.5+\log _{2} \sqrt{x}\)
    \(\Rightarrow \sqrt{\log _{2} x}=\frac{1}{2}+\frac{\log _{2} x}{2},\left[\because \log a^{n}=n \log a\right]\)
    On squaring we get, \(\log _{2} x=\frac{1+2 \log _{2} x+\left(\log _{2} x\right)^{2}}{4}\)
    \(\Rightarrow 4 \log _{2} x=1+2 \log _{2} x+\left(\log _{2} x\right)^{2}\)
    \(\Rightarrow\left(\log _{2} x\right)^{2}-2 \log _{2} x+1=0\)
    \(\Rightarrow\left(\log _{2} x-1\right)^{2}=0\)
    \(\Rightarrow \log _{2} x=1\)
    \(\Rightarrow x=2\)
    Hence, \(x\) is a prime number.
    Hence, option 'B' is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now