Self Studies

Mathematics Test - 40

Result Self Studies

Mathematics Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Suppose a, b, c are in AP and a2b2c2 are in GP. If a < b < c &a+b+c=32, then the value of a is

    Solution
    \(a, b, c\) are in \(A P \Rightarrow 2 b=a+c\)
    Also, \(a+b+c=3 / 2 \Rightarrow 3 b=3 / 2\)
    \(\Rightarrow b=1 / 2\)
    \(\Rightarrow a+c=1\)
    Next, \(\mathrm{a}^{2}, \mathrm{b}^{2}, \mathrm{c}^{2}\) are in GP.
    \(\Rightarrow b^{2}=\sqrt{a^{2} c^{2}} \Rightarrow b^{2}=\pm a c\)
    \(\Rightarrow a c=1 / 4\)
    or
    \(\mathrm{ac}=-1 / 4\)
    From (1) \& (2) a \& c are roots of a quadratic \(x^{2}-(a+c) x+a c=0\)
    \(\Rightarrow x^{2}-x+(1 / 4)=0\)
    \(\Rightarrow\left(x-\frac{1}{2}\right)^{2}=0\)
    Thus, the equation has roots \(a=c=\frac{1}{2}\)
    since, a \(\alpha\) bec, the above results are not satisfied.
    If we consider ac \(=-1 / 4,\) then
    \(x^{2}-x-(1 / 4)=0\)
    \(x=\frac{1 \pm \sqrt{2}}{2}\)
    \(=\frac{1}{2} \pm \frac{1}{\sqrt{2}}\)
    since, \(and
    \(c=\frac{1}{2}+\frac{1}{\sqrt{2}}\)
  • Question 2
    1 / -0

    Sum of n terms of series 12+16+24+40+..........will be

    Solution
    \(S_{n}=12+16+24+40+\ldots \ldots \ldots \ldots+t_{n}\)
    \(S_{n}=0+12+16+24+\ldots \ldots \ldots . t_{n-1}+t_{n}\)
    On Subtracting. \(0=12+4+8+16+\ldots+\left(t_{n}-t_{n-1}\right)-t_{n}\)
    or, \(t_{n}=12+[4+8+16+\ldots(n-1)\) terms \(]\)
    \(=12+\frac{4\left(2^{n-1}-1\right)}{2-1}\)
    \(=12+2^{n-1+2}-4\) or, \(t_{n}=8+2^{n+1}=8+2.2^{n}\)
    \(\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(8+2.2^{\mathrm{n}}\right)=8 \mathrm{n}+2\left[\frac{2 \cdot\left(2^{\mathrm{n}}-1\right)}{2-1}\right]\)
    \(=8 n+4\left(2^{n}-1\right)\) as \(\sum 2.2^{n}=2 \sum 2^{n}=2\left(2+2^{2}+2^{3}+\ldots\right)\)
  • Question 3
    1 / -0

    If a,b,c are three unit vectors such that \(\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\frac{1}{2} \overrightarrow{\mathrm{b}}\)and b is not parallel to c, then the angle between a and c is:

    Solution
    \(\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\frac{1}{2} \overrightarrow{\mathrm{b}}\)
    \(\Rightarrow(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}) \overrightarrow{\mathrm{c}}=\frac{1}{2} \overrightarrow{\mathrm{b}}\)
    Comparing on both sides of the equation \(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=\frac{1}{2}\)
    \(\Rightarrow \mathrm{ac} \cos \theta=\frac{1}{2}(\theta \quad\) is the angle between a and \(\mathrm{c})\)
    \(\Rightarrow \cos \theta=\frac{1}{2} \quad\) since a, b,c have unit magnitude
    \(\Rightarrow \theta=\frac{\pi}{3}\)
  • Question 4
    1 / -0
    The length of the longer diagonal of the parallelogram constructed on \(5 a+2 b\) and \(\vec{a}-3 b\), if it is given that \(|a|=2 \sqrt{2},|\vec{b}|=3\) and angle between
    \(\vec{a} \& \vec{b}\) is \(\frac{\pi}{4},\) is:
    Solution
    \(\dot{\alpha}=\dot{p}+\dot{q}, p-\dot{q}=\dot{\beta}\)
    where \(\dot{\mathrm{p}}=5 \mathrm{a}+2 \mathrm{b}, \dot{\mathrm{q}}=\mathrm{a}-3 \dot{\mathrm{b}},\) then \(\dot{\alpha}=\dot{\mathrm{p}}+\dot{\mathrm{q}}=6 \mathrm{a}-\dot{\mathrm{b}}\)
    \(\alpha^{2}=(6 \dot{a}-\dot{b})^{2}=36 a^{2}+b^{2}-12 a^{} b\)
    \(=36(8)+9-12(2 \sqrt{2})(3) \cos \left(\frac{\pi}{4}\right)=(15)^{2}\)
    \(\beta^{2}=(\vec{p}-\vec{q})^{2}=(4 \vec{a}+5 \vec{b})^{2}=16 a^{2}+25 b^{2}+40 \vec{a} \cdot \vec{b}\)
    \(=16(8)+25(9)+40(2 \sqrt{2})(3) \cos \left(\frac{\pi}{4}\right)=593\)
    \(\alpha=15, \beta=\sqrt{593}, \beta>\alpha\)
    \(\beta=\sqrt{593}\) is required length. \((c)\)
  • Question 5
    1 / -0

    The projection of the line joining the points (3,4,5)and (4,6,3)on the line joining the points (-1,2,4)and (1,0,5)is

    Solution
    The direction ratios of the line joining \(\mathrm{P}(-1,2,4)\) and \(\mathrm{Q}(1,0,5)\) are proportional to 2,-2,1
    \(\therefore\) Its direction cosines are \(\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\)
    Thus, the projection of the line joining \(\mathrm{A}(3,4,5)\) and \(\mathrm{B}(4,6,3)\) on \(\mathrm{PQ}\) is given by
    \(=\left|(4-3) \times \frac{2}{3}+(6-4) \times-\frac{2}{3}+(3-5) \times \frac{1}{3}\right|\)
    \(=\left|\frac{2}{3}-\frac{4}{3}-\frac{2}{3}\right|=\frac{4}{3}\)
  • Question 6
    1 / -0

    In how many ways seven different books be distributed to two persons if each person receives at least one book?

    Solution

    1. 7 books can be divided into following ways:

    (i) One person get 1 book and other get 6 books:

    \(\therefore\) Number of ways of distribution \(=\frac{7 !}{1 ! 6 !} \times 2 !=14\)

    (ii) a person get 2 books and the other get 5 books

    \(\therefore\) Number of ways of distribution \(=\frac{7 !}{2 ! 5 !} \times 2 !=42\)

    (iii) a person get 3 books and the other get 4 books

    \(\therefore\) Number of ways of distribution \(=\frac{7 !}{2141} \times 21=70\)

    Total number of ways of distribution=14+42+70=126

    Alternative:

    Here 7 books are to be distributed among two persons. Since each book can be distributed in two ways. Therefore the number of ways of distributing 7 books =2x2x2x2x2x2x2=128 but out of these ways there are two ways in which a person get all books and the other person get nothing.

    Number of ways in which each person get at least one book=128-2=126

  • Question 7
    1 / -0
    The sum of \(9 \mathrm{C}_{2} \cdot \frac{1}{9}+{ }^{9} \mathrm{C}_{3} \cdot \frac{1}{27}+{ }^{9} \mathrm{C}_{4} \cdot \frac{1}{81}+\ldots+{ }^{9} \mathrm{C}_{9} \cdot\left(\frac{1}{3}\right)^{9}\)
    Solution
    \({ }^{9} C_{2}(1 / 3)^{2}+{ }^{9} C_{3}\left(\frac{1}{3}\right)^{3}+\ldots \ldots . .^{9} C_{9}\left(\frac{1}{3}\right)^{9}\)
    \(=\left[{ }^{9} C_{0}+{ }^{9} C_{1}\left(\frac{1}{3}\right)+{ }^{9} C_{2}\left(\frac{1}{3}\right)^{2}+\ldots . . .^{9} C_{9}\left(\frac{1}{3}\right)^{9}\right]-\left[{ }^{9} C_{0}+{ }^{9} C_{1}\left(\frac{1}{3}\right)\right]\)
    \(=\left(1+\frac{1}{3}\right)^{9}-\left(1+\frac{9}{3}\right)\)
    \(=\left(\frac{4}{3}\right)^{9}-4\)
  • Question 8
    1 / -0

    The equation \(|z-\omega|^{2}+\left|z-\omega^{2}\right|^{2}=\lambda,\) represents the equation of a circle with \(\omega, \omega^{2}\) as extremities of a diameter, then \(\lambda\) is, (where \(\omega, \omega^{2}\) are cube roots of unity)

    Solution

  • Question 9
    1 / -0

    If \(\log _{2}\left(4^{x+1}+4\right) \log _{2}\left(4^{x}+1\right)=\log _{2} 8,\) then \(x\) equals

    Solution
    \(\log _{2}\left(4^{x+1}+4\right) \log _{2}\left(4^{x}+1\right)=\log _{2} 8\)
    \(\Rightarrow \log _{2} 4\left(4^{x}+1\right) \log _{2}\left(4^{x}+1\right)=\log _{2} 8\)
    \(\Rightarrow\left(\log _{2} 4+\log _{2}\left(4^{x}+1\right) \log _{2}\left(4^{x}+1\right)=\log _{2} 8\right.\)
    \(\operatorname{Let} \log _{2}\left(4^{x}+1\right)=y\)
    \(\Rightarrow\left(\log _{2} 2^{2}+y\right)(y)=\log _{2} 2^{3} \Rightarrow(2+y)(y)=3\)
    \(\Rightarrow y^{2}+2 y-3=0 \Rightarrow y=1,-3 \Rightarrow \log _{2}\left(4^{x}+1\right)=1,-3\)
    \(\Rightarrow 4^{x}+1=2^{1}\) or \(4^{x}+1=2^{-3}\)
    \(\Rightarrow 4^{\mathrm{x}}=1\) or \(4^{\mathrm{x}}=\frac{1}{8}-1=-\frac{7}{8}\)
    \(\Rightarrow \mathrm{x}=0\) or \(\mathrm{x} \in \phi,\left\{\right.\) as \(_{4} \mathrm{x}\) is always positive \(\}\)
    \(\Rightarrow x=0\)
  • Question 10
    1 / -0

    If \(x=a(\theta-\sin \theta) \& y=a(1-\cos \theta),\) then the value of

    Solution
    \(\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{a(0+\sin \theta)}{a(1-\cos \theta)}=\frac{\sin \theta}{1-\cos \theta}\)
    \(\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{\sin \theta}{1-\cos \theta}\right)\)
    \(=\frac{\mathrm{d}}{\mathrm{d} \theta}\left(\frac{\sin \theta}{1-\cos \theta}\right) \frac{\mathrm{d} \theta}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{d} \theta}\left(\frac{\sin \theta}{1-\cos \theta}\right)\left(\frac{1}{\mathrm{dx} / \mathrm{d} \theta}\right)\)
    \(=\frac{(1-\cos \theta)(\cos \theta)-\sin \theta(\sin \theta)}{(1-\cos \theta)^{2}} \frac{1}{a(1-\cos \theta)}=\frac{\cos \theta-\cos ^{2} \theta-\sin ^{2} \theta}{a(1-\cos \theta)^{3}}\)
    \(=\frac{\cos \theta-1}{a(1-\cos \theta)^{3}}=-\frac{1}{a(1-\cos \theta)^{2}}\)
    \(\left.\frac{d^{2} y}{d x^{2}}\right]_{\text {at } \theta=\frac{\pi}{2}}=-\frac{1}{a\left(1-\cos \frac{\pi}{2}\right)^{2}}=-\frac{1}{a}\)
    \(\left.\frac{d^{2} y}{d x^{2}}\right|_{\text {at } \theta=\frac{\pi}{3}}=-\frac{1}{a\left(1-\cos \frac{\pi}{3}\right)^{2}}=-\frac{4}{a}\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now