Self Studies

Mathematics Test - 46

Result Self Studies

Mathematics Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If matrix A such that A2= 2A − I , where II is the identity matrix, then for n ≥ 2, where n ∈ N ; Anis equal to :

    Solution
    Given:
    \(A^{2}=2 A-I\)
    \(A^{3}=A^{2} A=(2 A-I) A=2 A^{2}-I A=2 A^{2}-A=2(2 A-I)-A\)
    \(\Rightarrow A^{3}=3 A-2 I\)
    \(A^{4}=\left(A^{2}\right)\left(A^{2}\right)=(2 A-I)(2 A-I)=4 A^{2}-4 A I+I=4(2 A-I)-4 A+I\)
    \(\Rightarrow A^{4}=4 A-3 I\)
    \(\ldots\) and so on...
    According to the pattern, we can say that \(A^{n}=n A-(n-1) I\)
    Hence, option \(\mathrm{A}\).
  • Question 2
    1 / -0

    lf the order of A is 4×3, the order of B is 4 × 5 and the order of C is 7 × 3, then the order of (ATB)TCTis :

    Solution
    By operation of matrixes (4), order of \(A=4 \times 3\)
    So, By property of traspose (8) Order of \(A^{T}=3 \times 4\)
    So, order of \(A^{T} B=3 \times 5\) order of \(\left(A^{T} B\right)^{T}=5 \times 3\)
    and order of \(C^{T}=3 \times 7\). . So, order of \(\left(A^{T} B\right)^{T} C^{T} 5 \times 7\)
    Hence, the correct option is (D)
  • Question 3
    1 / -0
    If \(A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & i+1 \\ i-1 & 1\end{array}\right]\), then
    \(A\left(A^{T}\right)\) equals :
    Solution
    \(A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & i+1 \\ i-1 & 1\end{array}\right]\)
    \(A^{T}=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & i-1 \\ i+1 & 1\end{array}\right]\)
    \(\overline{A^{T}}=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & -i-1 \\ 1-i & 1\end{array}\right]\)
    Now, \(A \overline{A^{T}}=\frac{1}{3}\left[\begin{array}{cc}1 & i+1 \\ i-1 & 1\end{array}\right]\left[\begin{array}{cc}1 & -i-1 \\ 1-i & 1\end{array}\right]\)
    \(\begin{aligned}=& \frac{1}{3}\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right] \\=& I \\ \Rightarrow A \overline{A^{T}} &=I \end{aligned}\)
    Hence, the correct option is (B)
  • Question 4
    1 / -0
    $$
    \left|\begin{array}{lll}
    a+x & a-x & a-x \\
    a-x & a+x & a-x \\
    a-x & a-x & a+x
    \end{array}\right|=0 \text { then the }
    $$
    non-zero value of \(\mathrm{x}=\ldots \ldots \ldots\)
    Solution
    By operation of matrix (5), \(A=\left|\begin{array}{lll}a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x\end{array}\right|\)
    \(=(a+x)\left[(a+x)^{2}-(a-x)^{2}\right]-(a-x)\left[a^{2}-x^{2}-(a-x)^{2}\right]+(a-x)\left[(a-x)^{2}-\left(a^{2}-x^{2}\right)\right]\)
    \(=(a+x)(4 a x)-(a-x)\left(a^{2}-x^{2}\right)+2(a-x)^{3}-(a-x)\left(a^{2}-x^{2}\right)\)
    \(=(a+x)(4 a x)+2(a-x)\left[a^{2}+x^{2}-2 a x-a^{2}+x^{2}\right]\)
    \(=(a+x) 4 a x+2(a-x)\left(2 x^{2}-2 a x\right)\)
    \(A=4 a^{2} x+4 a x^{2}+4 a x^{2}-4 a^{2} x-a x^{3}+4 a x^{2}\)
    \(A=8 a x^{2}+4 a x^{2}-4 x^{3}\)
    \(A=12 a x^{2}-4 x^{3}\)
    Given, \(A=12 a x^{2}-4 x^{3}=0\)
    \(x^{2}(12 a-x)=0\)
    \(x=3 a\)
    Hence, the correct option is (B)
  • Question 5
    1 / -0

    The value of a for which the equations 3x − y + az =1, 2x + y + z = 2, x + 2y − az = −1 fail to have unique solution is :

    Solution
    For fail to have unique solu. \(\left|\begin{array}{ccc}3 & -1 & a \\ 2 & 1 & 1 \\ 1 & 2 & -a\end{array}\right|=0\)
    \(3(-a-2)+1(-2 a-1)+a(4-1)=0\)
    \(-3 a-6-2 a-1+4 a-a=0\)
    \(2 a+7=0\)
    \(a=-7 / 2\)
    Hence, the correct option is (B)
  • Question 6
    1 / -0
    If \(A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]\) and \(A^{-1}=\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 1 / 2 \\ -4 & 3 & c \\ 5 / 2 & -3 / 2 & 1 / 2\end{array}\right]\), then the values of \(a\) and \(c\) are equal to :
    Solution
    \(A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]\) and \(\quad A^{-1}=\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 1 / 2 \\ -4 & 3 & c \\ 5 / 2 & -3 / 2 & 1 / 2\end{array}\right]\)
    Here, \(|A|=-1(-8)+2(a-6)=2 a-4\)
    adj \(A=C^{T}=\left[\begin{array}{ccc}2-3 a & 8 & a-6 \\ 2 a-1 & -6 & 3 \\ -1 & 2 & -1\end{array}\right]^{T}\)
    \(\Rightarrow a d j A=\left[\begin{array}{ccc}2-3 a & 2 a-1 & -1 \\ 8 & -6 & 2 \\ a-6 & 3 & -1\end{array}\right]\)
    Hence, \(A^{-1}=\frac{1}{2 a-4}\left[\begin{array}{ccc}2-3 a & 2 a-1 & -1 \\ 8 & -6 & 2 \\ a-6 & 3 & -1\end{array}\right]\)
    Comparing with given \(A^{-1}\), \(-\frac{1}{2 a-4}=\frac{1}{2}\)
    \(\Rightarrow a=1\)
    Also, \(\frac{2}{2 a-4}=c\)
    \(\Rightarrow c=-1\)
    Thus the values of \(a\) and \(c\) are 1 and -1 respectively.
    Hence, the correct option is (B)
  • Question 7
    1 / -0

    The value of a third order determinant is 11, then the value of the square of the determinant formed by the cofactors will be :

    Solution
    Given, determinant of order 3 is
    11
    \(\Delta=11\)
    Then, the value of determinant formed by cofactors is \(\Delta^{\prime}=(\Delta)^{n-1}\)
    So, \(\Delta^{\prime}=121\)
    Required value \(=\left(\Delta^{\prime}\right)^{2}=(121)^{2}=14641\)
    Hence, the correct option is (D)
  • Question 8
    1 / -0

    If A is a square matrix of order n such that its elements are polynomials in x and its r-rows become identical for x = α then :

    Solution
    \(r\) rows of the matrix become
    identical when \(x=\alpha\).
    If we use row transformations
    on \(r-1\) of the identical rows such that the remaining identical row is subtracted from the other rows, then we will get \((x-\alpha)\) as a common factor in each of the \(r-1\) rows. \((x-\alpha,\) will be a factor since all the entries are polynomials.) Hence, \((x-\alpha)^{r-1}\) will be a common factor of \(|A|\).
    Hence, the correct option is (B)
  • Question 9
    1 / -0

    lf A and B are two square matrices such that B=−A−1BA then (A + B)2= ?

    Solution
    Pre multiply by A \(A B=-A A^{-1} B A\)
    \(\therefore A B=-B A\)
    \(\therefore(A+B)^{2}=A^{2}+B^{2}+A B+B A\)
    \(=A^{2}+B^{2}\)
    Hence, the correct option is (B)
  • Question 10
    1 / -0
    The rank of the matrix
    \(A=\left\{\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right\} i s\)
    Solution
    The determinant of matrix
    \(A_{3 \times 3}\) is o
    Now, take any \(2 \times 2\) matrix and calculating its determinant value its also comes out to be o And if we take single element of A we found that it is non-zero
    \(\therefore\) Rank of given matrix \(=1\)
    Hence, the correct option is (C)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now