Self Studies

Mathematics Test - 47

Result Self Studies

Mathematics Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The value of \(B=\sum_{0 \leq r \leq s \leq n} \sum\left(C_{r}-C_{s}\right)^{2}\)is :

    Solution
    Given \(A=\sum \sum_{0 \leq r \leq s \leq n} C_{r} C_{s}\)
    and \(\sum_{r=0}^{n} C_{r}^{2}={ }^{2 n} C_{n} \ldots . .(2)\)
    Given expansion can be written as \(\left(\sum_{r=0}^{n} C_{r}\right)^{2}=\left(C_{0}+C_{1}+C_{2}+\ldots .+C_{n}\right)^{2}\)
    Consider, \(\left(C_{0}+C_{1}+C_{2}+\ldots .+C_{n}\right)^{2}\)
    \(\Rightarrow\left(C_{0}+C_{1}+C_{2}+\ldots+C_{n}\right)^{2}=\sum_{r=0}^{n} C_{r}^{2}+2 \sum_{0 \leq r \leq s \leq n} C_{r} C_{s}\)
    We know that
    \(C_{0}+C_{1}+C_{2}+\ldots+C_{n}=2^{n}\)
    \(\Rightarrow\left(2^{n}\right)^{2}={ }^{2 n} C_{n}+2 A \quad(b y(1),(2))\)
    \(\Rightarrow 2^{2 n}={ }^{2 n} C_{n}+2 A\)
    \(\Rightarrow 2 A=2^{2 n}-{ }^{2 n} C_{n} \quad \ldots . .(3)\)
    Now, consider \(B=\sum_{0 \leq r \leq n \leq n} \sum\left(C_{r}-C_{s}\right)^{2}\)
    \(=\left(C_{0}-C_{1}\right)^{2}+\left(C_{0}-C_{2}\right)^{2}+\left(C_{0}-C_{3}\right)^{2}+\ldots \ldots+\left(C_{0}-C_{n}\right)^{2}\)
    \(+\left(C_{1}-C_{2}\right)^{2}+\left(C_{1}-C_{3}\right)^{2}+\ldots+\left(C_{1}-C_{n}\right)^{2}\)
    \(+\left(C_{2}-C_{3}\right)^{2}+\left(C_{2}-C_{4}\right)^{2}+\ldots+\left(C_{2}-C_{n}\right)^{2}\)
    \(+\ldots+\left(C_{n-1}-C_{n}\right)^{2}\)
    \(=\left(C_{0}^{2}+C_{1}^{2}-2 C_{0} C_{1}\right)+\left(C_{0}^{2}+C_{2}^{2}-2 C_{0} C_{2}\right)+\left(C_{0}^{2}+C_{3}^{2}-2 C_{0} C_{3}\right)+\ldots+\left(C_{0}^{2}+C_{n}^{2}\right.\)
    \(\left(C_{1}^{2}+C_{2}^{2}-2 C_{1} C_{2}\right)+\left(C_{1}^{2}+C_{3}^{2}-2 C_{1} C_{3}\right)+\ldots+\left(C_{1}^{2}+C_{n}^{2}-2 C_{1} C_{n}\right)+\)
    \(\left(C_{2}^{2}+C_{3}^{2}-2 C_{2} C_{3}\right)+\left(C_{2}^{2}+C_{4}^{2}-2 C_{2} C_{4}\right)+\ldots+\left(C_{2}^{2}+C_{n}^{2}-2 C_{2} C_{n}\right)+\)
    \(\cdots+\left(C_{n-1}^{2}+C_{n}^{2}-2 C_{n-1} C_{n}\right)\)
    \(\Rightarrow B=n\left(C_{0}^{2}+C_{1}^{2}+\ldots+C_{n}^{2}\right)-2 \sum_{0 \leq r \leq s \leq n} C_{r} C_{s}\)
    \(\Rightarrow B=n\left(2 n_{n}\right)-2 A \quad\left(b_{y}(2)\right)\)
    \(\Rightarrow B=n\left(2 n_{n}\right)-2^{2 n}+2 n C_{n}\left(b_{3}(3)\right)\)
    \(\Rightarrow B=(n+1)^{2 n} C_{n}-2^{2 n}\)
    Hence, the correct option is (C)
  • Question 2
    1 / -0

    (A + AB)T= XAT, X= ?

    Solution
    From equation \(\Rightarrow(A+A B)^{T}\)
    \(\Rightarrow A^{T}+B^{T} A^{T}\)
    \(\left\{\begin{array}{ll}W e \quad \text { known } & \text { that } \left.(A B)^{T}=B^{T} A^{T}\right\}\end{array}\right.\)
    \(\Rightarrow A^{T}\left(I+B^{T}\right)\)
    \(\Rightarrow A^{T} X\)
    \(\therefore X=I+B^{T}\)
    Hence, the correct option is (C)
  • Question 3
    1 / -0

    If A and B are two square matrices of order n and A and B commute then for any real number K, then ?

    Solution
    \(A B=B A \quad\) (GIven)
    Consider \((A-K I)(B-K I)\)
    where, \(K\) is any real number
    $$
    (A-K I)(B-K I)=A B-K(A+B)+K^{2}
    $$
    Interchanging \(A\) and \(B\), we get
    $$
    (B-K I)(A-K I)=B A-K(B+A)+K^{2}
    $$
    since \(A, B\) commute with each other
    $$
    \begin{aligned}
    \therefore(B-K I)(A-K I) &=B A-K(B+A)+K^{2} \\
    &=A B-K(A+B)+K^{2}=(A-K I)(B-K I)
    \end{aligned}
    $$
    Hence, option A is true and option C is false.
    We cannot say anything about equality of \(A-K I\) and \(B-K I\), since it is not given that \(A\) and \(B\) are equal or not. Hence, option \(\mathrm{B}\) is false.
    Consider \((A+K I)(B-K I)\)
    \((A+K I)(B-K I)=A B-K(A-B)-K^{2}\)
    since \(A, B\) commute with each other, \(\therefore(B-K I)(A+K I)=B A-K(B+A)+K^{2}=A B+K(A-B)+K^{2} \neq(A+K I)(B-K I)\)
    It is proved that, \(A+K I, B-K I\) do not commute with each other. Hence, option D is false.
    Hence, the correct option is (A)
  • Question 4
    1 / -0
    If
    \(A=\left[a_{i j}\right]_{3 \times 3}, B=\left[b_{i j}\right]_{2 \times 2}, C=\left[c_{i j}\right]_{3 \times 3}\)
    are three matrices so that
    \(|A|=3,|B|=-2,|C|=4,\) then \(|A B C|\)
    is equal to :
    Solution

    If \(A=\left[a_{i j}\right]_{3 \times 3}, B=\left[b_{i j}\right]_{2 \times 2}\)
    then
    \(A B\) does not exists.
    \(\therefore\) Number of columns of \(A\) iss not same as number of rows of \(B\)
    So, \(A B C\) also does not exist. \(\therefore|A B C|\) is not defined.
    Hence, option D.

  • Question 5
    1 / -0

    If A, B are symmetric matrices of the same order then AB − BA is :

    Solution
    Let \(A=\left[\begin{array}{ll}a & c \\ c & l\end{array}\right]\)
    \(B=\left[\begin{array}{ll}d & f \\ f & e\end{array}\right]\)
    \(A B=\left[\begin{array}{ll}(a d+c f) & (a f+c e) \\ (c d+l f) & (c f+l e)\end{array}\right]\)
    \(B A=\left[\begin{array}{ll}(d a+f c) & (d c+l f) \\ (f a+c e) & (f c+l e)\end{array}\right]\)
    \(A B-B A=\left[\begin{array}{cc}0 & a f+c e-(d c+l f) \\ -[(a f+c e)-(d c+l f)] & 0\end{array}\right]\)
    \(\therefore\) skew symmetric matrix.
    Hence, the correct option is (B)
  • Question 6
    1 / -0

    The greatest value of positive integer which divides

    (r + 2) (r + 3) (r + 4) (r + 5) ∀r ∈ N is

    Solution
    \(\operatorname{Let} P(r)=(r+2)(r+3)+(r+4)(r+5) \forall r \epsilon N\) as \(r \epsilon N\) means \(P(r)\) is the product of
    four consecutive positive integer which means \(\mathrm{p}(\mathrm{r})\) is the multiple of \(4 \mathrm{I}\)
    \(\therefore\) greatest positive integer which divides \((r+1)(r+2)(r+3)(r+4)\) is \(4 !\)
    Hence, the correct option is (A)
  • Question 7
    1 / -0

    Let A and B be 3 × 3 matrices such that AT= −A, BT= B , then matrix (λAB + 3BA) is a skew symmertric matrix for :

    Solution

    If the matrix \(\lambda A B+3 B A\) to be skew-symmetry, Then, it must satisfy \((\lambda A B+3 B A)^{T}=-(\lambda A B+3 B A)\)
    Now, considering \((\lambda A B+3 B A)^{T}\)
    \(=\lambda(A B)^{T}+3(B A)^{T}\)
    \(=\lambda B^{T} A^{T}+3 A^{T} B^{T}\)
    Substituting values of \(A^{T}=-A\) and \(B^{T}=B\), we get \(=-\lambda B A-3 A B=-(3 A B+\lambda B A)\)
    From this, we get \(\lambda=3\) clearly.
    Hence, option \(\mathrm{A}\).

  • Question 8
    1 / -0

    If A is a real skew-symmetric matrix such that A2+ I = O, then :

    Solution

    Given A is a real skew- - - symmetric matrix. \(A^{\prime}=-A\)
    We know that \(|A|=\left|A^{\prime}\right|\) \(|k A|=k^{n}|A|\)
    \(\therefore\left|A^{\prime}\right|=(-1)^{n}|A|\)
    \(\Rightarrow|A|=(-1)^{n}|A|\)
    \(\Rightarrow\left(1-(-1)^{n}\right)|A|=O\)
    \(\Rightarrow|A|=0\) or \(1-(-1)^{n}=0\) (if
    \(n\) is even \()\) But given \(A^{2}+I=O\) \(\Rightarrow A^{2}=-I\)
    \(\Rightarrow|A|^{2}=(-1)^{n}|I|=(-1)^{n} \neq 0\)
    Hence, A is of even order. \(|A|=1\)
    Hence, option 'D' is correct.

  • Question 9
    1 / -0

    If A is a symmetric matrix and nϵN then An is :

    Solution
    Since, A is symmetric \(A^{T}=A\)
    Now, \(\left(A^{2}\right)^{T}=(A A)^{T}=A^{T} A^{T}=A^{2}\)
    i.e. \(\left(A^{2}\right)^{T}=A^{2}\)
    Hence, \(A^{2}\) is symmetric.
    \(\left(A^{3}\right)^{T}=\left(A^{2} A\right)^{T}=A^{T}\left(A^{2}\right)^{T}=A A^{2}=A^{3}\)
    i.e. \(\left(A^{3}\right)^{T}=A^{3}\)
    Hence, \(A^{3}\) is symmetric.
    Hence, for all \(n \in N, A^{n}\) is symmetric
    Hence, the correct option is (A)
  • Question 10
    1 / -0

    If A is a 3rd order square diagonal matrix of non-positive entries such that A2= I, then :

    Solution
    If A is an involutor and diagonal matrix, then \(A^{2}=I\). \(\operatorname{Let} A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right] .\) Then \(A^{2}=I\)
    \(\Rightarrow|A|^{2}=1 \quad \Rightarrow|A|=-1\)
    ¿. - entries are non-positive? Thus \(|A|=-1\) \(A^{-1}=A\)
    \(|2 A|=-8\)
    \(|3 a d j(2 A)|=27 \cdot|a d j(2 A)|=27(-8)^{2}=1728\)
    Hence, the correct option is (D)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now