Self Studies

Mathematics Test - 48

Result Self Studies

Mathematics Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(a_{0}, a_{1}, a_{2}, \ldots,\) be the coefficients in the expansion of \(\left(1+x+x^{2}\right)^{n}\) in ascending powers

    of \(x,\) then \(a_{0} a_{1}-a_{1} a_{2}+a_{2} a_{3}-\ldots\)

    Solution

    \(\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2} \ldots .+a_{n} x^{n}\)

    Let \(n=1\) in the above expression, thus as we can see from the expression, the values of \(a_{0}=1\)

    also, \(a_{1}=1\)

    \(a_{2}=1\) and so on... Thus, the value of

    \(a_{0} a_{1}-a_{1} a_{2}+a_{2} a_{3}-\ldots \ldots \ldots .=1-1+1-1+1 \ldots \ldots\)

    Therefore, \(a_{0} a_{1}-a_{1} a_{2}+a_{2} a_{3}-\ldots \ldots \ldots .=0\)

    Hence option A is the correct answer.

  • Question 2
    1 / -0

    find the 7 th term in the expansion of \(\left(4 x-\frac{1}{2 \sqrt{x}}\right)^{13}\) ?

    Solution
    The 7 th term of the given binomial expansion will be, \(={ }_{6}^{13} \mathrm{C}(4 x)^{7}\left(-\frac{1}{2 x^{\frac{1}{2}}}\right)^{6}\)
    \(=\frac{13 ! \times 2^{14} \times x^{7}}{7 ! \cdot 6 ! \times 2^{6} \cdot x^{3}}\)
    \(=\frac{13 ! \times 2^{14}}{7 ! \times 6 ! \times 2^{6}} x^{4}\)
    \(=439296 x^{4}\)
    Hence, the correct option is (B)
  • Question 3
    1 / -0

    The coefficient of \(x^{m}\) in \(:(1+x)^{m}+(1+x)^{m+1}+\ldots .+(1+x)^{n}, \quad m \leq n\) is ?

    Solution
    The coefficient of \(x^{m}\) will be summation of \({ }^{m} C_{m}+{ }^{m+1} C_{m}+{ }^{m+2} C_{m} \ldots{ }^{n} C_{m}\)
    Upon simplifying we get \(C_{m+1}\)
    Hence, the correct option is (A)
  • Question 4
    1 / -0

    Value of \(20_{1}^{C}-2 \times 20_{2}^{C}+3 \times 20_{3}^{C} \ldots 20 \times 20_{2}^{C} 0\) is :

    Solution
    Consider \((1-x)^{20}\)
    \(=1-{ }^{20} C_{1} x^{1}+{ }^{20} C_{2} x^{2}-{ }^{20} C_{3} x^{3} \ldots+{ }^{20} C_{20} x^{20}\)
    By differentiating with respect to x, we get \(-n(1-x)^{n-1}=-20 C_{1}+2^{20} C_{2} x^{1}-3^{20} C_{3} x^{2}+\ldots .20^{20} C_{20} x^{19}\)
    Substituting \(\mathrm{x}=\mathrm{I},\) we get \(0=-{ }^{20} C_{1}+2{ }^{20} C_{2}-3{ }^{20} C_{3}+\ldots .20^{20} C_{20}\)
    Hence answer is \(0 .\)
    Hence, the correct option is (B)
  • Question 5
    1 / -0
    In the expansion of \(\left(3^{-\frac{x}{4}}+3^{\frac{5 x}{4}}\right)^{n}\) the sum of binomial coefficient is 256 and four times the term with greatest binomial coefficient exceeds the square of the third term by \(21 n\) then value of \(x\) is :
    Solution
    Given, The sum of all binomial coefficients is 256 So, \(2^{n}=256=2^{8}\) and \(n=8\)
    The term with the greatest binomial coefficient is the middle term that is \(T_{5}\)
    \(T_{5}=\frac{4}{8} C\left(3 \frac{-x}{4}\right)^{4}\left(3 \frac{5 x}{4}\right)^{4}\)
    and third term, \(T_{3}={ }_{8}^{2} C\left(3 \frac{-x}{4}\right)^{6}\left(3 \frac{5 x}{4}\right)^{2}\)
    Given,
    \(\Rightarrow 280.3^{4 x}-\frac{8.7}{2} .3^{x}=168\)
    \(\Rightarrow 280.3^{2 x} 3^{2 x}-\frac{8.7}{2} .3^{x}=168\)
    Let, \(3^{2 x}=y\)
    \(\mathrm{So}\)
    \(10 y^{2}-28 y-6=0\)
    \(\Rightarrow y=3\) or \(-\frac{1}{5}\)
    It cannot be negative, so \(y=3\)
    \(3^{2 x}=3\)
    Equating powers, we get \(2 x=1 \Rightarrow x=\frac{1}{2}\)
    Hence, the correct option is (A)
  • Question 6
    1 / -0

    In the expansion of (1 + x)n(1 + y)n(1+ z)n, then the sum of coefficients of the terms of degree mm is :

    Solution
    \((1+x)^{n}(1+y)^{n}(1+z)^{n}\)
    \(=\left(\sum_{r=0}^{n}{ }^{n} C_{r} x^{r}\right)\left(\sum_{s=0}^{n}{ }^{n} C_{s} y^{s}\right)\left(\sum_{t=0}^{n}{ }^{n} C_{t} z^{t}\right)\)
    \(=\sum_{0 \leq r, s, t \leq n}\left({ }^{n} C_{r}\right)\left({ }^{n} C_{s}\right)\left({ }^{n} C_{t}\right) x^{r} y^{s} z^{t}\)
    For sum of the coefficients of degree \(m,\) we must have \(r+s+t=m\) Where \(r, s, t\) are integers with \(r, s, t \geq 0\) Sum of such coefficients \(=\sum_{r, s, t \geq 0 r+s+t=m}\left({ }^{n} C_{r}\right)\left({ }^{n} C_{s}\right)\left({ }^{n} C_{t}\right)\)
    =the number of ways of choosing a total number of \(m\) balls out of \(n\) black, \(n\) white and \(n\) green balls \(={ }^{3 n} C_{m}\)
    Hence, the correct option is (C)
  • Question 7
    1 / -0
    If \(\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{39} x^{39}+a_{40} x^{40}\) then find the value of
    \(a_{0}+a_{1}+a_{2}+\ldots \ldots+a_{38}\)
    Solution
    \(\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots \ldots+a_{40} x^{40}\)
    Put \(x=1\) in ( 1\()\) \(4^{20}=a_{0}+a_{1}+a_{2}+\ldots \ldots \ldots+a_{40}\)
    \(\Rightarrow 2^{40}=a_{0}+a_{1}+a_{2}+\ldots \ldots \ldots+a_{40} \ldots .(2)\)
    Put \(x=-1\) in ( 1\()\) \(\Rightarrow 2^{20}=a_{0}-a_{1}+a_{2}-a_{3} \ldots \ldots \ldots a_{39}+a_{40} \ldots .(3)\)
    Adding ( 2 ) and ( 3 ), we get \(2^{40}+2^{20}=2\left(a_{0}+a_{2}+a_{4}+\ldots \ldots+a_{38}+a_{40}\right)\)
    \(2^{20}\left(2^{20}+1\right)=2\left(a_{0}+a_{2}+a_{4}+\ldots \ldots+a_{38}+a_{40}\right)\)
    \(\Rightarrow 2^{19}\left(2^{20}+1\right)=a_{0}+a_{2}+a_{4}+\ldots \ldots+a_{38}+a_{40}\)
    \(a_{0}+a_{2}+a_{4}+\ldots \ldots+a_{38}=2^{19}\left(2^{20}+1\right)-a_{40} \ldots . .(4)\)
    since, \(a_{40}\) is the coefficient of \(x^{40}\) in the expansion of \(\left(1+x+2 x^{2}\right)^{20}\) \(\Rightarrow a_{40}=2^{20}\)
    Put this value in (4), we get \(a_{0}+a_{2}+a_{4}+\ldots \ldots+a_{38}=2^{19}\left(2^{20}+1\right)-2^{20}\)
    \(\Rightarrow a_{0}+a_{2}+a_{4}+\ldots \ldots+a_{38}=2^{19}\left(2^{20}-1\right)\)
    Hence, the correct option is (A)
  • Question 8
    1 / -0

    \(\sum_{r=0}^{n-1} \frac{{ }^{n} C_{r}}{{ }^{n} C_{r}+{ }^{n} C_{r+1}}\) ?

    Solution
    The given summation can be re-written as \(\sum_{r=0}^{n-1} \frac{{ }^{n} C_{r}}{{ }_{n+1} C_{r+1}} \ldots\) (Using the
    properties of binomial coefficient) \(\rightarrow \sum_{r=0}^{n-1} \frac{r+1}{n+1}\)
    \(=\frac{1}{n+1}+\frac{2}{n+1}+\frac{3}{n+1}+\ldots \frac{n}{n+1}\)
    \(=\frac{n(n+1)}{2(n+1)}\)
    \(=\frac{n}{2}\)
    Hence, the correct option is (A)
  • Question 9
    1 / -0

    If matrix A is an circulant matrix whose elements of first row are a, b, c all >0 such that abc =1

    and ATA = I then a3+ b3+ c3 equals :

    Solution
    Given, A is circulant matrix of elements \(a, b, c\) and \(a b c=1\) \(\mathrm{So}, A=\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]\)
    So \(\operatorname{det} A=a\left(a^{2}-b c\right)-b\left(a c-b^{2}\right)+c\left(c^{2}-a b\right)\)
    \(=a^{3}+b^{3}+c^{3}-3 a b c\)
    det \(A=a^{2}+b^{3}+c^{3}-3\)
    and \(A^{T} A=I\)
    \(\left|A^{T} A\right|=|I|=1\)
    \(|A|\left|A^{T}\right|=1\)
    \(|A|^{2}=1\)
    \(|A|=\pm 1\)
    So, \(\operatorname{det} A=\pm 1\)
    After substituing the value in the
    \(\operatorname{det} A=a^{3}+b 63+c^{3}-3 a b c\)
    we get:
    \(a^{3}+b^{3}+c^{3}=4\) or
    \(a^{3}+b^{3}+C^{3}=-2\)
    Hence, the correct option is (D)
  • Question 10
    1 / -0
    If \(A=\left[a_{i j}\right] 3 \times 3\) is a square matrix so that \(a_{i j}=i^{2}-j^{2},\) then \(A\) is a :
    Solution

    Given:
    \(A=\left[a_{i j}\right]_{(3 \times 3)}\)
    where, \(a_{i j}=i^{2}-j^{2}\)
    \(\therefore a_{i j}=0\) if \(i=j\)
    Now, \(a_{12}=1^{2}-2^{2}=-3\)
    \(a_{13}=1^{2}-3^{2}=-8\)
    \(a_{21}=2^{2}-1^{2}=3\)
    \(a_{23}=2^{2}-3^{2}=-5\)
    \(a_{31}=3^{2}-1^{2}=8\)
    \(a_{32}=3^{2}-2^{2}=5\)
    \(\therefore A=\left[\begin{array}{ccc}0 & -3 & -8 \\ 3 & 0 & -5 \\ 8 & 5 & 0\end{array}\right]\)
    Here, \(A^{T}=-A\)
    \(\therefore A\) is a skew-symmetric matrix.
    Hence, option C.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now