Self Studies

Mathematics Test - 5

Result Self Studies

Mathematics Test - 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If the mean of a binomial distribution is 25, then its standard deviation lies in the interval

    Solution

    \begin{equation}\begin{aligned}
    &S . D . \sigma=\sqrt{n p q} \geq 0\\
    &\text { Mean, } np =25 \text { and } q<1\\
    &\therefore \sigma=\sqrt{n p q}<\sqrt{n p}\\
    &\sigma<5\\
    &\Rightarrow 0 \leq \sigma<5
    \end{aligned}\end{equation}

    Hence option A is correct.
  • Question 2
    1 / -0
    \begin{equation}\text { If } y = x ^{ x ^{2}}, \text { then } \frac{ dy }{ dx } \text { is equal to }\end{equation}
    Solution
    \begin{equation}\begin{array}{l}
    y=x^{2} \\
    \Rightarrow \ln y=x^{2} \ln x \\
    \frac{1}{y} \frac{d y}{d x}=2 x \operatorname{tn} x+x^{2} \cdot \frac{1}{x} \\
    =x(1+2 \tan x) \\
    \frac{d y}{d x}=x^{x^{2}} \cdot x(1+2 \ln x) \\
    =x^{2}+1(1+2 \ln x)
    \end{array}\end{equation}
    Hence option D is correct.
  • Question 3
    1 / -0
    \begin{equation}\text { If } \sin \left(\sin ^{-1} \frac{1}{7}+\cos ^{-1} x\right)=1, \text { then } x \text { is equal to }\end{equation}
    Solution

    \begin{equation}\begin{array}{l}
    \sin \left(\sin ^{-1} \frac{1}{7}+\cos ^{-1} x\right)=1 \\
    \Rightarrow \sin ^{-1} \frac{1}{7}+\cos ^{-1} x=\frac{\pi}{2} \\
    \Rightarrow \sin ^{-1} \frac{1}{7}=\frac{\pi}{2}-\cos ^{-1} x \\
    \Rightarrow \sin ^{-1} \frac{1}{7}=\sin ^{-1} x \\
    \Rightarrow x=\frac{1}{7}
    \end{array}\end{equation}

    Hence option D is correct.
  • Question 4
    1 / -0
    If \((\sqrt{8}+i)^{50}=3^{49}(a+i b),\) then \(a^{2}+b^{2}\) is
    Solution

    \((\sqrt{8}+i)^{50}=3^{49}(a+i b)\)
    Taking magnitude and squaring on both sides, we get \((8+1)^{50}=3^{98}\left(a^{2}+b^{2}\right)\)
    \(9^{50}=3^{98}\left(a^{2}+b^{2}\right)\)
    \(3^{100}=3^{98}\left(a^{2}+b^{2}\right)\)
    \(\Rightarrow a^{2}+b^{2}=9\)

    Hence option B is correct.
  • Question 5
    1 / -0
    If the roots of the equation \(a x^{2}+b x+c=0\) are of the form \(\frac{k+1}{k}\) and \(\frac{k+2}{k+1}\) then \((a+b+c)^{2}\) is equal to
    Solution

    We have
    \(\frac{k+1}{k}+\frac{k+2}{k+1}=\frac{-b}{a} \ldots(1)\)
    and \(\frac{k+1}{k} \cdot \frac{k+2}{k+1}=\frac{c}{a}\)
    \(\Rightarrow \frac{k+2}{k}=\frac{c}{a}\)
    or \(\frac{2}{k}=\frac{c}{a}-1=\frac{c-a}{a}\)
    or \(k=\frac{2 a}{c-a}\)\(\ldots\)(2)
    Now eliminate k putting the value of \(k\) in \(1^{\text {st }}\) relation, we get \(\frac{c+a}{2 a}+\frac{2 c}{c+a}=\frac{-b}{a}\)
    \(\Rightarrow(c+a)^{2}+4 a c=-2 b(a+c)\)
    \(\Rightarrow(a+c)^{2}+2 b(a+c)=-4 a c\)
    Adding \(b^{2}\) on both sides, \((a+b+c)^{2}=b^{2}-4 a c\)

    Hence option C is correct.
  • Question 6
    1 / -0
    \begin{equation}\text { If } f(x)=\left|\begin{array}{ccc}
    a & -1 & 0 \\
    a x & a & -1 \\
    a x^{2} & a x & a
    \end{array}\right|, \text { then } f(2 x)-f(x) \text { is  divisible by }\end{equation}
    Solution

    Doing \(R _{3} \rightarrow R _{3}- xR _{2}\) and
    \(R _{2} \rightarrow R _{2}- x R _{1}\)
    we get\(\quad,\) \(\begin{aligned} f(x) &=\left|\begin{array}{ccc}a & -1 & 0 \\ 0 & a+x & -1 \\ 0 & 0 & a+x\end{array}\right| \\ &=a(a+x)^{2} \end{aligned}\)
    \(So\) \(f(2 x)-f(x)\)
    \(=a\left[(a+2 x)^{2}-(a+x)^{2}\right]\)
    \(=a(a+2 x-a-x)(a+2 x+a+x)\)
    \(=a x(2 a+3 x)\)
    So, \(f(2 x)-f(x)=\operatorname{ax}(2 a+3 x)\)
    Thus, \(f(2 x)-f(x)\) is divisible by \(a, x\) and \((2 a+3 x)\).

    Hence option D is correct.
  • Question 7
    1 / -0

    The coefficient of x5 in (1+2x+3x2+……….up to infinite term)-3/2 is

    Solution

    \(\left(1+2 x+3 x^{2}+\ldots \ldots \ldots\right)^{-3 / 2}\)
    \(=\left((1-x)^{-2}\right)^{-3 / 2}\)
    \(=(1-x)^{3}=1-3 x+3 x^{2}-x^{3}\)
    \(\therefore\) coefficient of \(x^{5}=0\)

    Hence option D is correct.
  • Question 8
    1 / -0
    The equation of the normal to the ellipse \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) at the positive end of the latus rectum is
    Solution

    The equation of the normal at \(\left(x_{1}, y_{1}\right)\) to the given ellipse is \(\frac{ a ^{2} x }{ x _{1}}-\frac{ b ^{2} y }{ y _{1}}= a ^{2}- b ^{2}\)
    Here \(x _{1}=\) ae and \(y _{1}= b ^{2} / a\)
    So the equation of the normal at positive end of the latus rectum is \(\frac{ a ^{2} x }{ ae }-\frac{ b ^{2} y }{\frac{ b ^{2}}{ a }}= a ^{2} e ^{2}\)
    \(\left(\because b^{2}=a^{2}\left(1-e^{2}\right)\right)\)
    \(\Rightarrow \frac{ ax }{ e }- ay = a ^{2} e ^{2}\)
    \(\Rightarrow x-e y-e^{3} a=0\)

    Hence option B is correct.
  • Question 9
    1 / -0

    If the latus rectum of a hyperbola through one focus, subtends 60 ° angle at the other focus, then its eccentricity is

    Solution

    \(\tan 30^{\circ}=\frac{\frac{b^{2}}{a}}{2 a e}\)
    \(\Rightarrow \frac{2}{\sqrt{3}} e = e ^{2}-1\)
    \(\Rightarrow \sqrt{3 e ^{2}}-2 e -\sqrt{3}=0\)
    \(\Rightarrow e =\frac{2+\sqrt{4+12}}{2 \sqrt{3}}\)
    \(=\frac{2+4}{2 \sqrt{3}}\)
    \(\Rightarrow e =\frac{3}{\sqrt{3}}=\sqrt{3}\)
    Taking only positive value of e as eccentricity cannot be negative.
    Hence option B is correct.
  • Question 10
    1 / -0
    Consider the matrix \(B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right],\) then \(B ^{1027}\) equals
    Solution

    \begin{equation}\begin{array}{l}
    B=\left[\begin{array}{cc}
    0 & -1 \\
    1 & 0
    \end{array}\right], B^{2}=\left[\begin{array}{cc}
    -1 & 0 \\
    0 & -1
    \end{array}\right] \text { and } \\
    B^{4}=\left[\begin{array}{cc}
    1 & 0 \\
    0 & 1
    \end{array}\right]=I \\
    B^{1027}=\left(B^{4}\right)^{256} \cdot B^{3} \\
    =(I)^{256} \cdot B^{3} \\
    =I \cdot B^{3} \\
    =B^{3} \\
    =B \cdot B^{2} \\
    =\left[\begin{array}{cc}
    0 & -1 \\
    1 & 0
    \end{array}\right]\left[\begin{array}{cc}
    -1 & 0 \\
    0 & -1
    \end{array}\right]=\left[\begin{array}{cc}
    0 & 1 \\
    -1 & 0
    \end{array}\right]
    \end{array}\end{equation}

    Hence option B is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now