Self Studies

Mathematics Test - 50

Result Self Studies

Mathematics Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Fifteen coupons are numbered 1,2,3,....15 respectively. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9, is :
    Solution
    Every time the selected coupon must be from 1 to \(9 .\) The probability of such a selection at any time is \(\frac{9}{15}=\frac{3}{5}\) and this can happen 7 times i.e., \(\left(\frac{9}{15}\right)^{7}\) out of these \(\left(\frac{9}{15}\right)^{7},\left(\frac{8}{15}\right)^{7}\) cases do not contain the number 9 Thus, the required probability \(=\left(\frac{9}{15}\right)^{7}-\left(\frac{8}{15}\right)^{7}\)
    Hence, the correct option is (D)
  • Question 2
    1 / -0

    The number of common tangents to the circles x2 + y2 = 4 and x2 + y2 - 6x - 8y = 24 is :

    Solution

    Given, x2 + y2 = 4CentreC1(0,0)

    and R1 = 2

    Again, x2 + y2 - 6x - 8y - 24 = 0,

    thenC2≡(3,4)and R2 = 7

    Again, C1C2 = 5 = R2 - R1

    Therefore, the given circles touch internally such that, they can have just one common tangent at the point of contact.
    Hence, the correct option is (B)

  • Question 3
    1 / -0

    If \(f(x+y)=f(x)+f(y)-x y-1\) for all \(x, y \in R\) and \(f(1)=1\) then \(\sum_{h=1}^{5} f(h)\) is equal to :

    Solution
    \(\mathrm{f}(1+1)=\mathrm{f}(1)+\mathrm{f}(1)-1-1=0\)
    \(\mathrm{f}(2+1)=\mathrm{f}(2)+\mathrm{f}(1)-2-1=-2\)
    \(\mathrm{f}(3+1)=-5\) and \(\mathrm{f}(4+1)=-9\)
    \(\therefore\) Required sum \(=1+0-2-5-9=-15\)
    Hence, the correct option is (B)
  • Question 4
    1 / -0

    All the spades are taken out from a pack of cards. From these cards, cards are drawn one by one without replacement till the ace of spades comes. The probability that the ace comes in the 4th draw is :

    Solution
    Let \(A_{i}=\) Events that Ace comes in \(i^{t h}\) draw
    \(P\left(A_{1}\right)=\frac{1}{13} \quad P\left(\bar{A}_{1}\right)=\frac{12}{13}\)
    \(P\left(\bar{A}_{1} \cap \bar{A}_{2}\right)=P\left(\bar{A}_{1}\right) P\left(\frac{\bar{A}_{2}}{\bar{A}_{1}}\right)\)
    \(=\frac{12}{13} \times \frac{11}{12}\)
    So the required probability that are comes in \(4^{\text {th }}\) draw
    \(=P\left(\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3} \cap A_{4}\right)\)
    \(=P\left(\bar{A}_{1}\right) P\left(\frac{\bar{A}_{2}}{\bar{A}_{1}}\right) P\left(\frac{\bar{A}_{3}}{\bar{A}_{1} \cap \bar{A}_{2}}\right) P\left(\frac{A_{4}}{\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3}}\right)\)
    \(=\frac{12}{13} \times \frac{11}{12} \times \frac{10}{11} \times \frac{1}{10}=\frac{1}{13}\)
    Hence, the correct option is (A)
  • Question 5
    1 / -0

    If unit vector \(\overrightarrow{\mathrm{c}}\) makes an angle \(\frac{\pi}{3}\) with \(\hat{\mathrm{i}}+\mathrm{j},\) then minimum and maximum values of \((\hat{i} \times \hat{j}) \cdot \overrightarrow{\mathrm{c}}\) respectively are :

    Solution
    Let \(\overrightarrow{\mathrm{c}}=x \hat{i}+y \hat{j}+z \hat{k}\)
    \(\because|\vec{c}|=1 \Rightarrow x^{2}+y^{2}+z^{2}=1 \ldots(1)\)
    \(\& \cos \frac{\pi}{3}=\frac{\vec{c} \cdot(i+j)}{|\vec{c}||(i+j)|}=\frac{x+y}{\sqrt{2}} \Rightarrow \frac{1}{2}=\frac{x+y}{\sqrt{2}} \Rightarrow x+y=\frac{1}{\sqrt{2}} \ldots(2)\)
    \(\because\) We Have \(\frac{a^{n}+b^{n}}{2} \geq\left(\frac{a+b}{2}\right)^{\mathrm{n}} \Rightarrow \frac{x^{2}+y^{2}}{2} \geq\left(\frac{x+y}{2}\right)^{2}\)
    from (1)\(\&(2)\)
    \(\Rightarrow \frac{1-z^{2}}{2} \geq\left(\frac{1}{2 \sqrt{2}}\right)^{2}\)
    \(\Rightarrow \quad z^{2} \leq \frac{3}{4}\)
    \(\Rightarrow-\frac{\sqrt{3}}{2} \leq z \leq \frac{\sqrt{3}}{2} \quad \ldots .\)
    \(\&(i \times j) . \vec{c}=(\hat{k} . \vec{c})=z\)
    \(\therefore\) Min \(\&\) Max value of \(z\) are \(-\frac{\sqrt{3}}{2} \& \frac{\sqrt{3}}{2} \quad\) From (3)
    Dot Product of Vectors
    (1) Scalar or Dot product of two vectors: If \(\vec{a}\) and \(\vec{b}\) are two non - zero vectors and \(\theta\) be the angle between them, then their scalar product (or dot product) is denoted by \(\vec{a} . \vec{b}\) and is defined as the scalar \(|\mathrm{a}||b| \cos \theta,\) where \(|\mathrm{a}|\) and \(|b|\) are modulit of \(\vec{a}\) and \(\vec{b}\) respectively and \(0 \leq \theta \leq \pi .\) Dot product of two vectors is a scalar quantity.
    Some of the properties of the dot product are .
    (i) \(\vec{u} . \vec{v}=\vec{v} . \vec{u}\) (Commutative property)
    (ii) \(\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v} \cdot+\vec{u} . \vec{w}\) (Distributrive property)
    (iii) \(\vec{u} \cdot \vec{v}=0\) when \(\vec{u}\) and \(\vec{v}\) are orthogonal.
    \((\mathrm{iv})|\vec{v}|^{2}=\vec{v} \cdot \vec{v}\)
    (v) \(a(\vec{u} \cdot \vec{v})=(a \vec{u}) \cdot \vec{v}\)
    (vi) \(|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}\)
    (vii) \(|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}\)
    (viii) \(|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})\)
    (ix) If \(\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} \& \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\) then \(\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\)
    Hence, the correct option is (B)
  • Question 6
    1 / -0

    Let \(S=\frac{8}{5}+\frac{16}{65}+\ldots+\frac{128}{2^{18}+1},\) then :

    Solution
    \(\begin{aligned} \because S &=\sum_{r=1}^{16 n} \frac{8 r}{\left(4 r^{4}+1\right)} \\ &=\sum_{r=1}^{16} \frac{8 r}{\left(2 r^{2}-2 r+1\right)\left(2 r^{2}+2 r+1\right)} \\ \mathrm{S} &=2 \sum_{r=1}^{16}\left(\frac{1}{2 r^{2}-2 r+1}-\frac{1}{2 r^{2}+2 r+1}\right) \\ &=2\left\{\left(\frac{1}{1}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{13}\right)+\ldots+\left(\frac{1}{481}-\frac{1}{545}\right)\right\} \\ &=2\left(1-\frac{1}{545}\right)=\frac{1088}{545} \end{aligned}\)
    Hence, the correct option is (D)
  • Question 7
    1 / -0

    A lady wants to select one cotton saree and one polyester saree from a textile shop. If there are 10 cotton varieties and 12 polyester varieties, in how many ways can she choose the two sarees ?

    Solution

    There are 10 cotton sarees. The lady can select the cotton saree in 10 different ways. Corresponding to each of the above 10 different ways, she can select the polyester saree in 12 different ways because there are 12 polyester sarees.. Hence the no. of different ways of selecting the two sarees =10×12=120 sarees

    Fundamental counting principle(FCP)

    Suppose that an operation \(O_{1}\) can be done in m different ways and another operation \(O_{2}\) can be done in \(n\) different ways.

    (i) Addition rule: The number of ways in which we can do exactly one of the operations \(O_{1}, O_{2}\) is \(m+n\)

    (ii) Multiplication rule: The number of ways in which we can do both the operations \(O_{1}, O_{2}\) is mn.
    Hence, the correct option is (A)

  • Question 8
    1 / -0
    Find the value(s) of the parameter 'a'(a>0) for each of which the area of the figure bounded by the straight line, \(y=\frac{a^{2}-a x}{1+a^{4}} \&\) the parabola \(y=\frac{x^{2}+2 a x+3 a^{2}}{1+a^{4}}\) is the greatest :
    Solution
    \(y=\frac{a^{2}-a x}{1+a^{4}} \quad \cdots\)
    \(y=\frac{x^{2}+2 a x+3 a^{2}}{1+a^{4}}\)
    point of intersection of (i) and (ii)
    \(\frac{a^{2}-a x}{1+a^{4}}=\frac{x^{2}+2 a x+3 a^{2}}{1+a^{4}}\)
    \((x+a)(x+2 a)=0\)
    \(x=-a,-2 a\)
    Req area
    \(f(a)=\int_{-2 a}^{-a}\left[\left(\frac{a^{2}-a x}{1+a^{4}}\right)-\left(\frac{x^{2}+2 a x+3 a^{2}}{1+a^{4}}\right)\right] d x\)
    \(f(a)=\frac{a^{3}}{6\left(1+a^{4}\right)}\)
    \(\mathrm{f}(\mathrm{a})\) is max is when
    \(f^{\prime}(a)=0\)
    \(\Rightarrow 3+3 a^{4}-4 a^{4}=0\)
    \(\Rightarrow \mathrm{a}^{4}=3 \Rightarrow \mathrm{a}=3^{1 / 4}\)
    Hence, the correct option is (A)
  • Question 9
    1 / -0

    In the expansion of \(\left(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{\sqrt{a}}}\right)^{21}\) the term containing same powers of a and \(b\) is -

    Solution
    Given \(:\left(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{\sqrt{a}}}\right)^{21}\)
    \(t_{r+1}={ }^{21} C_{r}\left(\frac{a}{b}\right)^{\frac{21-r}{3}} \frac{b^{r / 3}}{a^{r / 6}}={ }^{21} C_{r} \quad a^{\frac{\Delta-3 r}{6}} \quad b^{\frac{2 r-21}{3}}\)
    \(\therefore 42-3 r=4 r-42\) i.e. \(\quad r=12\)
    \(\therefore 13^{\text {th }}\) term contains same power of a \(\&\) b.
    rth term of binomial expansion The \(r^{\text {th }}\) term of the expansion of \((a+b)^{n}\) is :
    \(\left(\begin{array}{c}\mathbf{n} \\ \mathbf{r}-1\end{array}\right) \mathbf{a}^{\mathrm{n}-(\mathbf{r}-1)} \mathbf{b}^{\mathbf{r}-\mathbf{1}}\)
    \(\left(\begin{array}{c}\mathbf{n} \\ \mathbf{r}-\mathbf{1}\end{array}\right),\) means \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}\)
    Hence, the correct option is (D)
  • Question 10
    1 / -0
    The parameter, on which the value of the determinant
    \(\left|\begin{array}{ccc}1 & \mathrm{a} & \mathrm{a}^{2} \\ \cos (\mathrm{p}-\mathrm{d}) \mathrm{x} & \cos \mathrm{px} & \cos (\mathrm{p}+\mathrm{d}) \mathrm{x} \\ \sin (\mathrm{p}-\mathrm{d}) \mathrm{x} & \sin \mathrm{px} & \sin (\mathrm{p}+\mathrm{d}) \mathrm{x}\end{array}\right|\)
    does not depend upon, is :
    Solution
    Let \(\Delta=\left|\begin{array}{ccc}1 & \mathrm{a} & \mathrm{a}^{2} \\ \cos (\mathrm{p}-\mathrm{d}) \mathrm{x} & \cos \mathrm{px} & \cos (\mathrm{p}+\mathrm{d}) \mathrm{x} \\ \sin (\mathrm{p}-\mathrm{d}) \mathrm{x} & \sin \mathrm{px} & \sin (\mathrm{p}+\mathrm{d}) \mathrm{x}\end{array}\right|\)
    Applying \(C_{1} \rightarrow C_{1}+C_{3}\)
    \(\Rightarrow \Delta=\left|\begin{array}{ccc}1+\mathrm{a}^{2} & \mathrm{a} & \mathrm{a}^{2} \\ \cos (\mathrm{p}-\mathrm{d}) \mathrm{x}+\cos (\mathrm{p}+\mathrm{d}) \mathrm{x} & \cos \mathrm{px} & \cos (\mathrm{p}+\mathrm{d}) \mathrm{x} \\ \sin (\mathrm{p}-\mathrm{d}) \mathrm{x}+\sin (\mathrm{p}+\mathrm{d}) \mathrm{x} & \sin \mathrm{px} & \sin (\mathrm{p}+\mathrm{d}) \mathrm{x}\end{array}\right|\)
    \(\Rightarrow \Delta=\left|\begin{array}{ccc}1+\mathrm{a}^{2} & \mathrm{a} & \mathrm{a}^{2} \\ 2 \cos \mathrm{px} \cos \mathrm{dx} & \cos \mathrm{px} & \cos (\mathrm{p}+\mathrm{d}) \mathrm{x} \\ 2 \sin \mathrm{px} \cos \mathrm{dx} & \sin \mathrm{px} & \sin (\mathrm{p}+\mathrm{d}) \mathrm{x}\end{array}\right|\)
    Applying \(C_{1} \rightarrow C_{1}-(2 \cos d x) C_{2}\)
    \(\Rightarrow \Delta=\left|\begin{array}{ccc}1+\mathrm{a}^{2}-2 \mathrm{a} \cos \mathrm{dx} & \mathrm{a} & \mathrm{a}^{2} \\ 0 & \cos \mathrm{px} & \cos (\mathrm{p}+\mathrm{d}) \mathrm{x} \\ 0 & \sin \mathrm{px} & \sin (\mathrm{p}+\mathrm{d}) \mathrm{x}\end{array}\right|\)
    \(\Rightarrow \Delta=\left(1+a^{2}-2 a \cos d x\right)[\sin (p+d) x \cos p x-\sin p x \cos (p+d) x]\)
    \(\Rightarrow \Delta=\left(1+a^{2}-2 a \cos d x\right) \sin d x\)
    Which is independent of \(\mathrm{p}\)
    Hence, the correct option is (B)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now