Self Studies

Mathematics Test - 6

Result Self Studies

Mathematics Test - 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The set of solutions satisfying both x2+5x+6≥0 and x2+3x−4<0 is :

    Solution
    \(x^{2}+5 x+6 \geq 0 \Rightarrow(x+2)(x+3) \geq 0 \Rightarrow x \in(-\infty,-3] \cup[-2, \infty)\)
    and \(x^{2}+3 x-4<0 \Rightarrow(x+4)(x-1)<0 \Rightarrow x \in(-4,1)\)
    Hence set of solution satisfying both is (-4,-3]\(\cup[-2,1).\)
    Hence option B is the correct answer.
  • Question 2
    1 / -0
    Find the solution of the inequality \((x-3)<\sqrt{x^{2}+4 x-5}\) ?
    Solution
    \((x-3)<\sqrt{x^{2}+4 x-5}\)
    \(\Rightarrow\)x-32\(\Rightarrow-10 x<-14\)
    \(\Rightarrow x>\frac{7}{5}\).......(i)
    From the given inequality, it follows that
    \(x^{2}+4 x-5 \geq 0\)
    \(\Rightarrow(x+5)(x-1) \geq 0\)
    \(\Rightarrow x \in(-\infty,-5] \cup[1, \infty)\).........(ii)
    From ( 1 ) and (2) , it follows that
    \(\Rightarrow x \in(-\infty,-5] \cup[1, \infty)\)
    Hence option A is the correct answer.
  • Question 3
    1 / -0

    The figure of the function P(x)=ax2+bx+c is graphed. Find which of the following would be positive for the given scenario.

    Solution
    The parabola is an open upward parabola.
    Hence \(a>0\) Now the \(y_{\text {intercept }}\) is greater than \(0.\)
    Hence, \(P(0)>0\) or \(c>0\)
    Both the roots are positive. Therefore, sum of roots is positive. Hence, sum of roots \(>0\) or \(\frac{-b}{a}>0\)
    But \(a>0\) already, hence \(b<0\)
    Therefore, \(a>0, c>0\) but \(b<0\).
    Hence option D is the correct answer.
  • Question 4
    1 / -0
    Let \(f(x)=x^{2}-x+1, x \geq\left(\frac{1}{2}\right)\) then the solution of the equation \(f(x)=f^{-1}(x)\) is :
    Solution
    \(y=x^{2}-x+1 \Rightarrow x^{2}-x+(1-y)=0\)
    Here, \(a=1, b=-1\) and \(c=1-y\)
    \(x=\frac{1 \pm \sqrt{1-4(1-y)}}{2}\left[\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right]\)
    \(\because x>\frac{1}{2}, \quad \therefore x=\frac{1}{2}+\sqrt{y-\frac{3}{4}}\)
    \(\Rightarrow f^{-1}(x)=\frac{1}{2}+\sqrt{x-\frac{3}{4}}\)
    Now, \(x^{2}-x+1=\frac{1}{2}+\sqrt{x-\frac{3}{4}}\)
    since the graphs of the original and inverse functions can intersect only on the straight line \(y=x,\) therefore \(x=f(x) \quad \Rightarrow x=x^{2}-x+1\)
    \(\Rightarrow x^{2}-2 x+1=0\)
    \(\Rightarrow(x-1)^{2}=0\)
    \(\Rightarrow x=1\)
    Hence option A is the correct answer.
  • Question 5
    1 / -0
    If \(f(x)\) is a polynomial function such that \(f(x) f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)\) and \(f(3)=-80\) then \(f(x)\) is equal to:
    Solution
    Consider \(f(x)=1-x^{n}\)
    Therefore the above function complies with the rule that \(f(x)+f(1 / x)=f(x) \cdot f(1 / x)\)
    \(=\frac{-(1-x)^{2 n}}{x^{n}}\)
    Now substituting \(x=3\) we get \(f(x)\) as \(1-3^{n}\)
    \(=-80\)
    \(81=3^{n}\)
    \(n=4\)
    Therefore \(f(x)=1-x^{4}\)
    Hence option C is the correct answer.
  • Question 6
    1 / -0
    If (3,1) is a solution of the equation 3x+2y=k find the value of k.
    Solution
    (3,1) is a solution of the equation 3x+2y=k
    3x+2y=k
    =>3(3)+2(1)=k
    =>k=9+2=11
    Hence option A is the correct answer.
  • Question 7
    1 / -0

    If f:R→R and g:R→R are defined by f(x)=x−[x] and g(x)=[x] for x∈R, where [x] is the greatest integer not exceeding x, then for every x∈R,f(g(x))=

    Solution
    We have, \(\mathrm{f}(\mathrm{x})=\mathrm{x}-[\mathrm{x}]=\{\mathrm{x}\} \ldots\) (1)
    where \(\{x\}\) is the fractional part of \(x\)
    If \(\mathrm{g}(\mathrm{x})=[\mathrm{x}],\) where \([\mathrm{x}]\) is the greatest integer part of \(\mathrm{x},\) then
    The value of \(\mathrm{g}(\mathrm{x})\) will always be an integer.
    And \(\therefore \mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}([\mathrm{x}])=0\)
    \(\therefore\) the fractional part of \(\mathrm{g}(\mathrm{x})\) i.e \([\mathrm{x}]\) is always \(0 .\)
    Hence option B is the correct answer.
  • Question 8
    1 / -0
    The domain of \(f(x)=\sin ^{-1}\left(\frac{x-4}{3}\right)+\log (2-x)\) is :
    Solution
    We know that, \(-1 \leq \sin x \leq 1\)
    For \(f\) to be defined,
    \(-1 \leq \frac{x-4}{3} \leq 1\) and \(2-x>0\)
    \(\Rightarrow-3 \leq x-4 \leq 3\) and \(x<2\)
    \(\Rightarrow 1 \leq x \leq 7\) and \(x<2\)
    From above required domain is [1,2).
    Hence option B is the correct answer.
  • Question 9
    1 / -0

    If \(f(a)=\log \frac{2+a}{2-a}\) for \(0

    Solution
    \(\operatorname{since} f(x)=\log \left(\frac{2+a}{2-a}\right),\) we have
    \(\frac{1}{2} f\left(\frac{8 a}{4+a^{2}}\right)=\frac{1}{2} \log \left(\frac{2+\frac{8 a}{4+a^{2}}}{2-\frac{8 a}{4+a^{2}}}\right)=\frac{1}{2} \log \left[\frac{8+2 a^{2}+8 a}{8+2 a^{2}-8 a}\right]=\frac{1}{2} \log \left[\frac{4+a^{2}+4 a}{4+a^{2}-4 a}\right]=\)
    Applying \(\log x^{a}=a \log x,\) we get
    \(\frac{1}{2} \log \left(\frac{2+a}{2-a}\right)^{2}=\frac{2}{2} \log \left(\frac{2+a}{2-a}\right)\)
    Hence, \(\frac{1}{2} f\left(\frac{8 a}{4+a^{2}}\right)=f(x)\)
    Hence option A is the correct answer.
  • Question 10
    1 / -0
    If \(f: R \rightarrow R\) and \(g: R \rightarrow R\) are functions defined by \(f(x)=3 x-1 ; g(x)=\sqrt{x+6},\) then the value of \(\left(g \circ f^{-1}\right)(2009)\) is:
    Solution
    Given \(f(x)=3 x-1, g(x)=\sqrt{x+6}\)
    Let \(f(x)=y\) \(\Rightarrow y=3 x-1 \Rightarrow y+1-3 x \Rightarrow x=\frac{y+1}{3}\)
    Now, \(f^{-1}(y)=x=\frac{y+1}{3}\)
    \(\Rightarrow f^{-1}(x)=\frac{x+1}{3}\) and \(g(x)=\sqrt{x+6}\)
    Consider, \(\left(g \circ f^{-1}\right)(2009)=g\left[f^{-1}(2009)\right]\)
    \(=g\left(\frac{2009+1}{3}\right)=g\left(\frac{2010}{3}\right)\)
    \(=\sqrt{\frac{2010}{3}+6}=\sqrt{\frac{2028}{3}}=\sqrt{676}=26\)
    Hence, option \(A\) is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now