Self Studies

Mathematics Test - 8

Result Self Studies

Mathematics Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of \(\frac{d y}{d x}=\frac{a x+h}{b y+k}\) represents a parabola, when :
    Solution
    The given differential equation is
    \(\frac{d y}{d x}=\frac{a x+h}{b y+k}\)
    On integrating both sides.
    \(\int(b y+k) d y=\int(a x+h) d x\)
    \(\Rightarrow \quad \frac{b y^{2}}{2}+k y=\frac{a x^{2}}{2}+h x+c\)
    Thus, above equation represents a parabola, if
    \(a=0\) and \(b \neq 0\)
    Hence option C is the correct answer.
  • Question 2
    1 / -0
    If \(y=a^{x} b^{2 x-1},\) then \(\frac{d^{2} y}{d x^{2}}\) is equal to :
    Solution
    \(\because y=a^{x} b^{2 x-1}\)
    Taking log on both sides, we get
    \[\log y=x \log a+(2 x-1) \log b
    \]On differentiating w.r.t. \(x,\) we get
    \[\begin{aligned}
    \frac{1}{y} \frac{d y}{d x} &=\log a+\log b^{2} \\
    \frac{d y}{d x} &=y \log a b^{2}
    \end{aligned}
    \]Again differentiating, we get
    \[\frac{d^{2} y}{d x^{2}}=\frac{d y}{d x} \log a b^{2}=y\left(\log a b^{2}\right)^{2}
    \]
    Hence option C is the correct answer.
  • Question 3
    1 / -0

    A missile fired from the ground level rises x meters vertically upwards in t seconds, where x = 100t - 25/2 t2. The maximum height reached is :

    Solution
    The given equation is
    \(x=100 t-\frac{25}{2} t^{2}\)
    On differentiating w.r.t. \(t,\) we get \(\frac{d x}{d t}=100-\frac{25}{2} \cdot(2 t)=100-25 t\) We know that the velocity of missile is zero at maximum height. \(\therefore\) On putting \(\frac{d x}{d t}=0,\) we get
    \(\begin{aligned} 100-25 t &=0 \\ \Rightarrow \quad t=4 \\ \therefore x=100 \times 4-\frac{25 \times 16}{2} &=400-200 \\ &=200 \end{aligned}\)
    Hence option A is the correct answer.
  • Question 4
    1 / -0
    A vector perpendicular to \(2 \hat{i}+\hat{j}+\hat{k}\) and coplanar with \(\hat{i}+2 \hat{j}+\hat{k}\) and \(\hat{i}+\hat{j}+2 \hat{k}\) is :
    Solution
    Any vector \(\perp\) to \(\vec{a}\) and coplanar to \(\vec{b}\) and \(\vec{c}\) is given by \(\vec{a} \times(\vec{b} \times \vec{c})\) \(\therefore\) Required vector is
    \((2 \hat{i}+\hat{j}+\hat{k}) \times[(\hat{i}+2 \hat{j}+\hat{k}) \times(\hat{i}+\hat{j}+2 \hat{k})]\)
    \(=(2 \hat{i}+\hat{j}+\hat{k}) \times\left[\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]\)
    \(=(2 \hat{i}+\hat{j}+\hat{k}) \times(3 \hat{i}-\hat{j}-\hat{k})\)
    \(=\left|\begin{array}{rrr}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 3 & -1 & -1\end{array}\right|=5(\hat{j}-\hat{k})\)
    Hence option A is the correct answer.
  • Question 5
    1 / -0

    If n(U) = 20, n(A) = 12, n(B) = 9, n(AB) = 4, where U is the universal set, A and B are subsets of U, then n | (A U B)o| is equal to :

    Solution
    \(n(U)=20, n(A)=12, n(B)=9, n(A \cap B)=4\)
    \(\therefore n(A \cup B)=n(A)+n(B)-n(A \cap B)\)
    \(=12+9-4=17\)
    Hence, \(n\left[(A \cup B)^{c}\right]=n(U)-n(A \cup B)\)
    \(=20-17=3\)
    Hence option D is the correct answer.
  • Question 6
    1 / -0

    The derivative of y = (1 - x)(2 - x)….(n - x) at x = 1 is equal to :

    Solution

    Derivative of y=(1-x)(2-x)…….(n-x)

    dy/dx(uvw)=u’vw+uv’w+uvw’

    dy/dx= -1(2-x)(3-x)…(n-x)+ (1-x)(-1)(3-x)..(n-x)+……+(1-x)(2-x)……(n-1-x)(-1)

    at x=1,only one term will be left as other terms include (1-x) become zero.

    dy/dx(at x=1)= -1(2-1)(3-1)….(n-1)+0+…..+….+0

    => -1*(1)(2)…..(n—1)

    =>-1(n-1)!

    Hence option B is the correct answer.
  • Question 7
    1 / -0

    The circumradius of the triangle whose sides are 13, 12 and 5, is :

    Solution
    Let sides are \(a=13, b=12, c=5\)
    Now, \(a^{2}=b^{2}+c^{2}\)
    \(\Rightarrow \quad(13)^{2}=(12)^{2}+5^{2}\)
    \(\Rightarrow \quad 169=169\)
    \(\Rightarrow \quad \angle A =90^{\circ}\)
    We know, \(R=\frac{a}{2 \sin A}\)
    \[R=\frac{13}{2 \cdot \sin 90^{\circ}}=\frac{13}{2}
    \]
    Hence option B is the correct answer.
  • Question 8
    1 / -0

    If nC12 = nC6, then nC2 is equal to :

    Solution
    Given \({ }^{\mathrm{n}} \mathrm{C}_{12}={ }^{\mathrm{n}} \mathrm{C}_{6}\)
    or \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-12}={ }^{\mathrm{n}} \mathrm{C}_{6}\)
    \(\Rightarrow \mathrm{n}-12=6\)
    \(\Rightarrow \mathrm{n}=18\)
    \(\therefore \mathrm{C}_{2}={ }^{18} \mathrm{C}_{2}=\frac{18 \times 17}{2 \times 1}\)
    \(=153\)
    Hence option B is the correct answer.
  • Question 9
    1 / -0

    The sum of 24 terms of the series √2 + √8 + √18 + √32 + .... is:

    Solution
    \begin{equation}\begin{array}{l}
    \text { Now, } \sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+\ldots \\
    \quad=1 \times \sqrt{2}+2 \sqrt{2}+3 \sqrt{2}+4 \sqrt{2}+\ldots \\
    \quad=\sqrt{2}(1+2+3+4+\ldots \text { upto } 24 \text { terms }) \\
    \quad=\sqrt{2} \times \frac{24 \times 25}{2}=300 \sqrt{2}\left[\because \Sigma n=\frac{n(n+1)}{2}\right]
    \end{array}\end{equation}
    Hence option C is the correct answer.
  • Question 10
    1 / -0

    The equation of the circle with centre (2, 1) and touching the line 3x + 4y = 5 is:

    Solution
    Distance from centre (2,1) to the line
    \(3 x+4 y-5=\) radius of circle
    \(\Rightarrow \quad \frac{|3(2)+4(1)-5|}{\sqrt{3^{2}+4^{2}}}=r\)
    \(\Rightarrow \quad \frac{5}{5}=r\)
    \(\Rightarrow \quad r=1\)
    \(\therefore\) Equation of circle is \((x-2)^{2}+(y-1)^{2}=1^{2}\)
    \(\Rightarrow \quad x^{2}+y^{2}-4 x-2 y+4+1=1\)
    \(\Rightarrow \quad x^{2}+y^{2}-4 x-2 y+4=0\)
    Hence option C is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now