Self Studies

Mathematics Test - 9

Result Self Studies

Mathematics Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If \(\frac{x}{\alpha}+\frac{y}{\beta}=1\) touches the circle \(x^{2}+y^{2}=a^{2},\) then the point \((1 / \alpha, 1 / \beta)\) lies on a/an :
    Solution
    since the line \(\frac{x}{\alpha}+\frac{y}{\beta}=1\) touches the circle \(x^{2}+y^{2}=a^{2}\)
    \(\therefore\) The perpendicular distance from centre (0, 0) to the tangent = radius of the circle
    \(\Rightarrow \quad \frac{|-1|}{\sqrt{\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}}}=a\)
    \(\Rightarrow \quad \frac{1}{a^{2}}=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}\)
    The locus of \(\left(\frac{1}{\alpha}, \frac{1}{\beta}\right)\) is \(\frac{1}{a^{2}}=\frac{1}{x^{2}}+\frac{1}{y^{2}}\)
    \(\therefore\) It represents a circle.
    Hence option B is the correct answer.
  • Question 2
    1 / -0

    The horizontal distance between two towers is 60 m and the angles of depression of the top of the first tower as seen from the top of the second is 30o. If the height of the second tower is 150 m, then the height of the first tower is :

    Solution

  • Question 3
    1 / -0

    If f(x) = ax2 + bx + c and g(x) = px2 + qx with g(1) = f(1), g(2) - f(2) = 1 and g(3) - f(3) = 4, then g(4) - f(4) is equal to :

    Solution
    \begin{equation}\begin{aligned}
    &\begin{array}{l}
    \because f(x)=a x^{2}+b x+c \\
    \text { and } \quad g(x)=p x^{2}+q x
    \end{array}\\
    &\text { since, } g(1)=f(1)\\
    &\begin{array}{lr}
    \Rightarrow p+q=a+b+c......(i) \\
    \text{ and } g(2)-f(2)=1 \\
    \Rightarrow 4 p+2 q-4 a-2 b-c=1......(ii) \\
    \text { also } g(3)-f(3)=4 \\
    \Rightarrow 9 p+3 q-9 a-3 b-c=4.....(iii)
    \end{array}
    \end{aligned}\end{equation}From Eqs. (i) and (ii)
    \[\begin{aligned}
    2 p =2 a-c+1 \\
    \text { Now, } g(4)-f(4) & \\
    = 16 p+4 q-16 a-4 b-c \\
    = 12 p+4(p+q)-16 a-4 b-c=6-3 c
    \end{aligned}
    \]
    Hence option D is the correct answer.
  • Question 4
    1 / -0
    \(\int \frac{e^{x}(1+\sin x)}{1+\cos x} d x\) is equal to :
    Solution

    \(\begin{aligned} \operatorname{Let} I &=\int e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x \\ &=\int e^{x} \frac{\left(1+2 \sin \frac{x}{2} \cos \frac{x}{2}\right)}{2 \cos ^{2} \frac{x}{2}} d x \\ &=\int \frac{1}{2} e^{x} \sec ^{2} \frac{x}{2} d x+\int e^{x} \tan \frac{x}{2} d x \\ &=\frac{1}{2}\left[2 e^{x} \tan \frac{x}{2}-\int 2 e^{x} \tan \frac{x}{2} d x+\int e^{x} \tan \frac{x}{2} d x\right] \\ &=e^{x} \tan \frac{x}{2}-\int e^{x} \tan \frac{x}{2} d x+\int e^{x} \tan \frac{x}{2} d x+c \\ &=e^{x} \tan \frac{x}{2}+c \end{aligned}\)

    Hence option A is the correct answer.

  • Question 5
    1 / -0
    For hyperbola \(\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1,\) which of the following remains constant with change in \({ }^{\prime} \alpha^{\prime} ?\)
    Solution
    Given equation of hyperbola is \(\frac{\mathrm{x}^{2}}{\cos ^{2} \alpha}-\frac{\mathrm{y}^{2}}{\sin ^{2} \alpha}=1\)
    Here, \(\mathrm{a}^{2}=\cos ^{2} \alpha\) and \(\mathrm{b}^{2}=\sin ^{2} \alpha\)
    (i.e, comparing with standard equation \(\left.\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{b}^{2}}=1\right)\)
    We know, foci \(=(\pm \mathrm{ae}, 0)\)
    where ae \(=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=\sqrt{\cos ^{2} \alpha+\sin ^{2} \alpha}=1\)
    \(\Rightarrow\) foci \(=(\pm 1,0)\)
    where as vertices are \((\pm \cos \alpha, 0)\)
    Eccentricity ae \(=1 \Rightarrow \mathrm{e}=\frac{1}{\cos \alpha}\)
    Hence foci reamins constant with change in \(^{\prime} \alpha^{\prime}\)
    Hence option B is the correct answer.
  • Question 6
    1 / -0

    The number of common tangents to the circles x2 + y2 + 2x + 8y - 23 = 0 and x2 + y2 - 4x - 10y + 9 = 0, is :

    Solution
    The centre and radius of the first circle \(x^{2}+y^{2}+2 x+8 y-23=0\) are \(C_{1}(-1,-4)\)
    and \(r_{1}=\sqrt{40}\)
    Similarly, the centre and radius of second circle \(x^{2}+y^{2}-4 x-10 y+9=0\) are \(C_{2}(2,5)\) and
    \(\begin{aligned} r_{2}=\sqrt{20} & \\ \text { Now, } C_{1} C_{2} &=\sqrt{(2+1)^{2}+(5+4)^{2}} \\ &=\sqrt{9+81}=\sqrt{90} \end{aligned}\)
    and \(\quad r_{1}+r_{2}=\sqrt{40}+\sqrt{20}\)
    also \(\quad r_{1}-r_{2}=\sqrt{40}-\sqrt{20}\)
    Here, r1, r2Two common tangents can be drawn.
    Hence option C is the correct answer.
  • Question 7
    1 / -0
    If \(0<\alpha<\beta<\gamma<\frac{\pi}{2}\), then the equation \(\frac{1}{x-\sin \alpha}+\frac{1}{x-\sin \beta}+\frac{1}{x-\sin \gamma}=0\) has :
    Solution
    \(\frac{1}{x-\sin \alpha}+\frac{1}{x-\sin \beta}+\frac{1}{x-\sin \gamma}=0\)
    \(\Rightarrow 3 x^{2}+2(\sin \alpha+\sin \beta+\sin \gamma) x+\sin \alpha \sin \beta+\sin \beta \sin \gamma+\sin \gamma \sin \alpha=0\)
    \(\Delta=b^{2}-4 a c\)
    \(=\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \alpha-\sin \alpha \sin \beta-\sin \beta \sin \gamma-\sin \gamma \sin \alpha=0\)
    \(=\frac{1}{2}\left[(\sin \alpha-\sin \beta)^{2}+(\sin \beta-\sin \gamma)^{2}+(\sin \gamma-\sin \alpha)^{2}\right]\)
    \(\Delta>0\)
    \(\therefore\) Roots are real and unequal.
    Hence option C is the correct answer.
  • Question 8
    1 / -0

    Find all the values of the parameter a for which both roots of the quadratic equation x2−ax+2=0 belong to the interval (0,3).

    Solution
    Given equation is \(x^{2}-a x+2=0\)
    For roots to lie in the interval (0,3) following conditions should hold:
    I) \(D \geq 0\) \(\Rightarrow a^{2}-8 \geq 0\)
    \(\Rightarrow(a+2 \sqrt{2})(a-2 \sqrt{2}) \geq 0\)
    \(\Rightarrow a \in(-\infty,-2 \sqrt{2}) \cup(2 \sqrt{2}, \infty)\)
    2) \(0<-\frac{b}{2 a}<3\)
    \(\Rightarrow 0<\frac{a}{2}<3\)
    \(\Rightarrow a>0\) and \(a<6\)
    3) \(a . f(0)>0\) which is true for all \(a>0\)
    4) a. \(f(3)>0\) \(9-3 a+2>0\)
    \(a<\frac{11}{3}\)
    From equations ( 1 ), ( 2 ) and ( 3 ),
    we get \(a \in\left(2 \sqrt{2}, \frac{11}{3}\right)\)
    Hence option A is the correct answer.
  • Question 9
    1 / -0

    Number of integer values of k for which the quadratic equation 2x2+kx−4=0 will have two rational solutions is :

    Solution
    Dividing by the coefficient of \(x^{2}\) we get
    \(x^{2}+\frac{k x}{2}-2=0\)
    \(\left(x+\frac{k}{4}\right)^{2}-\frac{k^{2}}{4}-2=0\)
    \(\left(x+\frac{k}{4}\right)^{2}=\frac{k^{2}+8}{4}\)
    Hence for rational roots
    \(\frac{k^{2}+8}{4}\) has to be a perfect square.
    We get a perfect square at \(x=\pm 1\)
    Hence number of integral values of \(k\) is \(2 .\)
    Hence option B is the correct answer.
  • Question 10
    1 / -0

    Let α,β be the roots of the equation ax2+bx+c=0 and α44 be the roots of the equation px2+qx+r=0, then the roots of the equation a2px2−4acpx+2c2p+a2q=0 are:

    Solution
    \(a x^{2}+b x+c=0 \ldots \ldots . .(i)\)
    \(\alpha, \beta\) are the roots of above equation \(\therefore \alpha+\beta=\frac{-b}{a} \ldots . .(i i)\)
    \(\alpha \beta=\frac{c}{a} \ldots \ldots . .(i i i)\)
    \(\alpha^{4}\) and \(\beta^{4}\) are the roots of equation \(p x^{2}+q x+r=0\)
    \(\therefore \alpha^{4}+\beta^{4}=\frac{-q}{p} \ldots .(i v)\)
    \(\alpha^{4} \beta^{4}=\frac{r}{p} \ldots \ldots .(v)\)
    \(a^{2} p x^{2}-4 a c p x+2 c^{2} p+a^{2} q=0\)
    Let \(r\) and \(\delta\) be roots of above equation
    \(\therefore \quad r+\delta=\frac{4 a c p}{a^{2} p}=\frac{4 c}{a}\)
    \(r \delta=\frac{2 c^{2} p+a^{2} q}{a^{2} p}\)
    \(=2\left(\frac{c}{a}\right)^{2}+\frac{q}{p}\)
    \(=2 \alpha^{2} \beta^{2}-\left(\alpha^{4}+\beta^{4}\right) \ldots \ldots\) [From equation \((i i i)\) and \(\left.(i v)\right]\)
    \(=-\left(\alpha^{4}+\beta^{4}-2 \alpha^{2} \beta^{2}\right)\)
    \(=-\left(\alpha^{2}-\beta^{2}\right)^{2}\)
    \(\left(\alpha^{2}-\beta^{2}\right)^{2}>0\)
    \(\therefore-\left(\alpha^{2}-\beta^{2}\right)^{2}<0\)
    \(\therefore r \delta<0\)
    \(\Rightarrow(r<0 \quad \& \quad \delta>0)\) or \((r>0 \quad \& \quad \delta<0)\)
    \(\therefore\) Roots of given equation are opposite in sign.
    Hence option C is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now