Self Studies

Physics Test - 20

Result Self Studies

Physics Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    A transformer has an efficiency of 80%. It is connected to a power input of 4 kW and 100 V. if the secondary voltage is 240 V, then the secondary current is.

    Solution
    \(\mathrm{E}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}=\) Power Input
    \(\Rightarrow 100 \times \mathrm{I}_{\mathrm{p}}=4 \times 10^{3}\)
    \(\Rightarrow \mathrm{I}_{\mathrm{p}}=40 \mathrm{A}\)
    \(\eta=\frac{\mathrm{P}_{0}}{\mathrm{P}_{1}} \Rightarrow \frac{80}{100}=\frac{\mathrm{P}_{0}}{4 \times 10^{3}}\)
    \(\mathrm{E}_{\mathrm{s}} \mathrm{I}_{3}=3200\)
    \(\Rightarrow \mathrm{I}_{\mathrm{s}}=\frac{3200}{240}=13.3 \mathrm{A}\)
    Hence, the correct option is D.
  • Question 2
    1 / -0

    A particle is projected from point A towards a building of height h as shown at an angle of 60 ° with horizontal. It strikes the roof of building at B at an angle of 30 ° with the horizontal. The speed of projection is

    Solution
    Let u be the speed of projection and v be the speed at B \(u \cos 60^{\circ}=v \cos 30^{\circ}\)
    \(\Rightarrow v=\frac{u}{\sqrt{3}}\)
    Applying law of conservation of energy, \(\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=-m g h\)
    Using equation (i) in equation (ii), we have \(u=\sqrt{3 g h}\)
    Hence, the correct option is C.
  • Question 3
    1 / -0

    A sonometer wire resonates with a given tuning fork forming stationary waves with 5 antinodes, between 2 bridges, when a mass of 9 kg is suspended from the wire. When the mass is replaced by another mass m, the wire with the same tuning fork forms three antinodes, for the same position of the bridges. The value of m is...

    Solution
    \(v=\frac{p}{2 \ell} \sqrt{\frac{T}{\mu}},\) where \(\mu\) is the mass per unit length of wire and \(T=\) weight of mass \((M g)\) and \(p\) is number of antinodes.
    since wire and the tuning fork are the same in both cases, so \(v \propto P \sqrt{T}\)
    v oc \(P \sqrt{\text { Weight }}\) \((\mathrm{As}, \mathrm{T}=\mathrm{W}\) eight \()\)
    \(\frac{v_{1}}{v_{2}}=\frac{p_{1}}{p_{2}} \sqrt{\frac{M_{1}}{M_{2}}}\)
    \(\therefore \frac{v_{1}}{v_{2}}=\frac{5}{3} \sqrt{\frac{9}{\mathrm{m}}}\)
    \(\therefore \frac{v_{1}}{v_{2}}=\frac{5 \sqrt{9}}{3 \sqrt{m}}\)
    \(\therefore \mathrm{m}=25 \mathrm{kg}\)
    Hence, the correct option is A.
  • Question 4
    1 / -0

    Velocity of a particle moving in a curvilinear path in a horizontal X Y plane varies with time as \(\vec{v}=\left(2 t \widehat{i}+t^{2} \widehat{j}\right)\)m/s. Here, t is in second. Then at t=1 second-

    Solution
    \(\overline{\mathrm{V}}=2 \mathrm{t} \hat{\mathrm{i}}+\mathrm{t}^{2} \hat{\mathrm{j}}\)
    \(\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{t}} \hat{\mathrm{j}}\)
    \(|\overline{\mathrm{V}}|=\mathrm{V}=\sqrt{4 \mathrm{t}^{2}+\mathrm{t}^{4}}\)
    \(a_{t}=\left|\frac{d v}{d t}\right|=\frac{1}{2 \sqrt{4 t^{2}+t^{4}}} \times\left(8 t+4 t^{3}\right)\)
    at \(t=1 \quad a_{t}=\frac{6}{\sqrt{5}} \mathrm{m} / \mathrm{s}^{2}\)
    \(a=\sqrt{2^{2}+(2 t)^{2}}=\sqrt{8} \mathrm{m} / \mathrm{s}^{2}\)
    \(a_{c}=\sqrt{a^{2}-a_{t}^{2}}=\sqrt{8-\frac{36}{5}}=\left(\frac{2}{\sqrt{5}}\right)\)
    \(\mathrm{R}=\left(\frac{5 \sqrt{5}}{2}\right) \mathrm{m}\)
    Hence, the correct option is D.
  • Question 5
    1 / -0

    A rod of mass M and length l is at rest on plane horizontal smooth surface. A particle of same mass M strike one end with velocity u perpendicular to rod, elastically. Now just after collision what is the kinetic energy of upper half part of rod.

    Solution

  • Question 6
    1 / -0
    One mole of an ideal gas \(\left(\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{v}}}=\gamma\right)\) heated by law \(\mathrm{p}=\alpha \mathrm{V}\) where \(\mathrm{P}\) is pressure of gas, \(\mathrm{V}\) is volume, \(\alpha\) is a constant. The heat capacity of gas in the process is-
    Solution
    \(C=\frac{Q}{n_{\Delta} T}=\frac{\Delta U+_{\Delta} W}{n_{\Delta} T}=\frac{n C_{v} \Delta T+\int_{v_{i}}^{v_{f}} P d V}{n_{\Delta} T}=C_{V}+\frac{\alpha}{n_{\Delta} T} \cdot \int_{V_{1}}^{v_{f}} V d v\)
    \(=\frac{\mathrm{R}}{\gamma-1}+\frac{1}{2} \frac{\alpha \mathrm{V}_{f}^{2}-\alpha \mathrm{V}_{i}^{2}}{\mathrm{n} \Delta \mathrm{T}}\)
    \(=\frac{\mathrm{R}}{\gamma-1}+\frac{1}{2} \frac{\mathrm{P}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}}{\mathrm{n}_{\Delta} \mathrm{T}}\)
    \(\because P V=n R T\)
    \(\therefore \frac{P_{f} V_{f}-P_{i} V_{i}}{n \Delta T}=R\)
    \(\mathrm{sO}\)
    \(\frac{\mathrm{R}}{\gamma-1}+\frac{1}{2} \frac{\mathrm{P}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}}{\mathrm{n}_{\Delta} \mathrm{T}}=\mathrm{R}\left[\frac{1}{\gamma-1}+\frac{1}{2}\right]=\frac{\mathrm{R}}{2}\left[\frac{\gamma+1}{\gamma-1}\right]\)
    Hence, the correct option is D.
  • Question 7
    1 / -0

    A planet of core density 3ρ and outer curst of density ρ has small tunnel in core. A small Particle of mass m is released from end A then time required to reach end B :

    Solution
    At some distance from centre inside core \(F=-\left(\frac{G \frac{4}{3} \pi r^{3}(3 p) m}{r^{2}}\right)\)
    \(\mathrm{ma}=-4 \pi \mathrm{G} \rho \mathrm{mr}\)
    \(\mathrm{a}=-4 \pi \mathrm{G} \rho \mathrm{r}\)
    so \(\omega=\sqrt{4 \pi \mathrm{G} \rho}=\frac{2 \pi}{\mathrm{T}}\)
    or \(T=2 \pi \sqrt{\frac{1}{4 \pi \mathrm{G} \rho}}=\sqrt{\frac{\pi}{\mathrm{G} \rho}}\)
    Now time for \(A\) to \(B=\frac{1}{2} \sqrt{\frac{\pi}{G p}}\)
    Hence, the correct option is B.
  • Question 8
    1 / -0

    In the figure as shown, a triangular portion is cut from a circular disc of radius R. The distance of centre of mass of the remaining part from the centre of disc is

    Solution

  • Question 9
    1 / -0

    In a damped oscillator the amplitude of vibrations of mass m = 150 grams falls by 1/e times of its initial value in time t0 due to viscous forces. The time t0 and the percentage loss in mechanical energy during the above time interval t0 respectively are (Let damping constant be 50 grams/s)

    Solution
    \(A^{\prime}=A e^{-b t / 2 m}\)
    \(\frac{A}{e}=A e^{-i x_{0} / 2 m}\)
    \(\frac{b t}{2 m}=1\)
    \(t_{0}=\frac{2 m}{b}=\frac{2 \times 150}{50}=6 s\)
    \(E^{\prime}=\frac{1}{2} K A^{2} e^{-b t m}=\frac{1}{2} K A^{2} e^{-2}\)
    \(\% L o s s=\frac{E-E^{\prime}}{E} \times 100=\frac{1-e^{-2}}{1} \times 100\)
    \(=\frac{e^{2}-1}{e^{2}} \times 100\)
    Hence, the correct option is A.
  • Question 10
    1 / -0

    The maximum current in a galvanometer can be 10 mA. It’s resistance is 10Ω. To convert it into an ammeter of 1 Amp. A resistor should be connected in...

    Solution
    \(I_{G}=10 \mathrm{mA}\)
    \(\mathrm{G}=10 \Omega\)
    \(\mathrm{S}\left(\mathrm{I}-\mathrm{I}_{\mathrm{G}}\right)=\mathrm{I}_{\mathrm{G}} \mathrm{G}\)
    where Sis shunt in par allel \(\mathrm{S}=\frac{\mathrm{I}_{\mathrm{G}} \mathrm{G}}{\mathrm{I}-\mathrm{I}_{\mathrm{G}}}=\frac{10 \times 10^{-3} \times 10}{1-10 \times 10^{-3}}=0.1 \Omega\)
    Hence, the correct option is B.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now