Self Studies

Surface Areas and Volumes Test - 23

Result Self Studies

Surface Areas and Volumes Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A solid is in the form of a right circular cone mounted on a solid hemisphere with the same radius is made from a piece of metal. The radius of the hemisphere is $$\displaystyle \frac{1}{3}$$ of the vertical height of the conical part. If the radius of the base of the cone is $$r$$, the volume of the piece of metal is
    Solution

    Volume of the solid $$ = $$ Volume of the hemispherical part $$ + $$ Volume of conical part


    Volume of a hemisphere of radius $$'r'$$ $$ = \dfrac { 2 }{ 3 } \pi { r }^{ 3 } $$


    Volume of a cone $$ = \dfrac { 1 }{ 3 } \pi { r }^{ 2 }h $$  where $$r$$ is the radius of the base of the cone and $$h$$ is the height.


    Given, $$r$$$$ = \dfrac {1}{3} h \Rightarrow h = 3r $$


    Hence,

    Volume of the solid $$ =\left(\dfrac { 2 }{ 3 } \pi { r }^{ 3 }\right)+  \left(\dfrac { 1 }{ 3 } \times \pi \times { r }^{ 2 }\times 3r\right )$$

                                     $$=\dfrac { 2 }{ 3 } \pi { r }^{ 3 }+\pi r^3$$

                                     $$=  \dfrac {5}{3} \pi {r}^{3}  $$

  • Question 2
    1 / -0
    A vessel is in the form of a hemispherical bowl, surmounted by a hollow cylinder. The diameter of the hemisphere is $$12\ \text{cm}$$ and the total height of the vessel is $$16\ \text{cm}$$. Find the capacity of the vessel. (Take $$\pi$$ = 22/7). Also find the internal surface area of the vessel.
    Solution
    The diameter of the hemispherical bowl is $$12\ \text{cm}$$ 
    The radius of the hemisphere r=$$\frac{12}{2}=6\ \text{cm}$$ 
    The curved surface area of the bowl=$$2\pi r^2$$
                                                                 = $$2\times 3.14\times 6\times 6\ \text{cm}$$
                                                                 = $$226.08\ \text{cm}^2$$
    The total height of the vessel is =$$16\ \text{cm}$$ 
    The height of the cylindrical part=$$(16-6)\ \text{cm}$$
                                                          =$$10\ \text{cm}$$ 
    The surface area of the cylinder =$$2\pi r h$$
                                                          =$$2\times 3.14\times 6\times10\ \text{cm}^2$$
                                                          =$$376.8\ \text{cm}^2$$
    The surface area of the vessel = Surface area of the cylinder + Surface area of the sphere
                                                        =$$(377.14+226.28)\ \text{cm}^2$$
                                                        =$$602.88\ \text{cm}^2$$
  • Question 3
    1 / -0
    A solid toy is in the form of a right circular with hemispherical ends. The total height of the solid is 19 cm and diameter of the cylinder is 7 cm. Find the volume and total surface area of the solid. (Take $$\pi = \dfrac{22}{7}$$)
    Solution
    height of the solid = 19 cm,
    and diameter of the cylinder = 7 cm, radius=3.5 cm,
    Height of the 
    cylinder =19-7=12 cm,
    the volume of the solid=volume of cylinder+volume of 2 hemisphere
    $$V=\Pi { r }^{ 2 }h+2*\Pi\frac { 2 }{ 3 } { r }^{ 3 }$$
    $$V=\frac { 22 }{ 7 } { \times 3.5 }^{ 2 }\times 12+2*\frac { 22 }{ 7 } \times \frac { 2 }{ 3 } { 3.5 }^{ 3 }$$
    $$V=\frac { 22 }{ 7 } { \times 3.5 }^{ 2 }\times 12+2*\frac { 22 }{ 7 } \times \frac { 2 }{ 3 } { 3.5 }^{ 3 }$$
    $$V=462+179.67$$
    $$V=641.67cm^3$$
    total surface area of the solid=
    $${ S }_{ a }=2\times 2\Pi { r }^{ 2 }+2\Pi rh$$
    $${ S }_{ a }=2\times 2\times \frac { 22 }{ 7 } { 3.5 }^{ 2 }+2\frac { 22 }{ 7 } \times 3.5\times 12$$
    $${ S }_{ a }=154+264=418$$
    Answer $$641.66\, cm^{3};\, 418\, cm^{2}$$
  • Question 4
    1 / -0
    The diameter of a metallic sphere is $$6$$ cm. The sphere is melted and drawn into a wire of uniform circular cross-section. If the length of the wire is $$36$$ m, find the radius of its cross-section.
    Solution
    The wire is in the shape of a cylinder.
    Since the sphere is melted and a cylindrical wire is formed, their volumes are equal. 
    Volume of a sphere $$ = \cfrac { 4 }{ 3 } \pi { r }^{ 3 } $$
    As the diameter of the sphere is $$6$$ cm, its radius $$r = 3$$ cm
    Volume of a Cylinder $$ = \pi { R }^{2 }h $$
    Length of the wire $$ h = 36  m = 3600  cm $$
    Hence, Volume of sphere $$ = $$ Volume of the wire
    $$ \cfrac { 4 }{ 3 } \pi { r }^{ 3 }=\pi { R }^{ 2 }h $$
    $$ {R}^{2} = \cfrac {1}{100} $$
    $$ R = \cfrac {1}{10} = 0.1  cm $$
    Hence, radius of the cross-section of the wire $$ = 0.1  cm $$

  • Question 5
    1 / -0
    The slant height of the frustrum of a cone is $$4$$ cm. If the perimeters of its circular bases be $$18$$ cm and $$6$$ cm, find the curved surface area of the frustum and also find the cost of painting its total surface at the rate of Rs. $$12.50$$ per $$100 cm^{2}$$.
  • Question 6
    1 / -0
    The radii of the circular ends of the frustum of a right circular cone are $$14$$ cm and $$12$$ cm and its thickness is $$9$$ cm. Find the lateral surface of the frustum. (Take $$\pi$$ $$= 3.14$$)
    Solution
    Curved Surface area of a frustum of a cone  $$=\pi l({r}_{1}+{ r }_{ 2}) $$, where $$l$$ is the slant height 
    $$ l = \sqrt { { h }^{ 2 }+ (r_1 - r_2)^2}$$, where $$h$$ is the height$$ { r }_{ 1 } $$ and $${ r }_{ 2 }$$ are the radii of the lower and upper ends of a frustum of a cone.
    So, 
    $$l = \sqrt { { 9  }^{ 2 }+{ (14 - 12) }^{ 2 } } $$ $$ = \sqrt {85} \ \text{cm}$$
    Hence, Curved Surface area of this frustum of a cone $$=3.14 \times \sqrt {85} \times (14 + 12)\ \text{cm}^2 $$
                                                                                               $$= 753.6 \ \text{cm}^{2} $$  
  • Question 7
    1 / -0
    A rectangular tank $$28\ m$$ long and $$22\ m$$ wide is required to receive entire water from a full cylindrical tank of internal diameter $$28\ m$$ and depth $$4\ m.$$ Find the least height of the tank that will serve the purpose. $$\bigg($$Take $$\pi \ = \ \, \dfrac{22}{7}\bigg)$$
    Solution

    Volume of water in the rectangular tank will be equal to the volume of water in the cylindrical tank.

    Volume of a Cylinder $$ = \pi{ R }^{ 2 }h $$

    Radius of the cylindrical tank $$ = \dfrac {Diameter}{2} = 14\  m $$

    Volume of a cuboid $$ = l\times  b \times h $$

    Hence, $$ 28\times 22\times h =  \cfrac {22}{7} \times {(14) }^{ 2 }\times 4 $$

                 $$\Rightarrow \ \ \ \ \  \ \ \ \  \ h=4\ m$$

    Hence, the least height of the tank that will serve the purpose is $$ 4\  m. $$

  • Question 8
    1 / -0
    A godown building as shown in figure is made in the form of a cubical base with dimensions $$40m\, \times\, 14 m\, \times\, 4 m$$, surmounted by a half cylindrical curved roof having same length as that of the base. The diameter of the cylinder is $$14m$$. Find the volume of the building and its total outer surface area.

    Solution
    Volume of building$$=$$volume of cuboid+volume of half cylinder
    $$ =l\times b\times h+\cfrac { 1 }{ 2 } \pi { r }^{ 2 }h\\ =(40\times 14\times 4)+\cfrac { 1 }{ 2 } \times \cfrac { 22 }{ 7 } \times \cfrac { 14 }{ 2 } \times \cfrac { 14 }{ 2 } \times 40\\ =2240+3080\\ =5320{ m }^{ 3 }$$
     total outer surface area$$=2h(l+b)+\cfrac { 1 }{ 2 } \pi { r }^{ 2 }h+\pi { r }^{ 2 }\\ =2\times 4(40+14)+\cfrac { 22 }{ 7 } \times 7\times 40+\cfrac { 22 }{ 7 } \times 7\times 7\\ =8\times 54+22\times 40+22\times 7\\ =1466{ m }^{ 2 }$$
  • Question 9
    1 / -0
    A cone is made from a circular sector of radius 2 units. If total surface area of cone (including base) is $$\displaystyle\pi $$ sq. units, find the radius of base of the cone 
    Solution


    TSA of cone $$=\pi rl+\pi { r }^{ 2 }=\pi r\left( l+r \right) =\pi \quad \left[ Given \right] $$

    $$\Rightarrow \quad r\left( l+r \right) =1\Rightarrow r\left( 2+r \right) =1\Rightarrow 2r+{ r }^{ 2 }=1\Rightarrow { r }^{ 2 }+2r+1=2$$

    $$\Rightarrow \quad { \left( r+1 \right)  }^{ 2 }=2\Rightarrow r+1=\sqrt { 2 } \Rightarrow r=\left( \sqrt { 2 } -1 \right) $$

    CSA of cone $$=\pi rl=$$ CSA of sector

    $$\Rightarrow \quad CSA\quad of\quad sector=\pi \left( \sqrt { 2 } -1 \right) \times 2=\left( 2\sqrt { 2 } -2 \right) \pi $$

  • Question 10
    1 / -0
    A reservoir is in the shape of a frustum of a right circular cone It is $$8 \ m$$ across at the top and $$4\ m$$ across at the bottom. If it is $$6\ m$$ deep its capacity is
    Solution
    Volume of a frustum of a cone $$ = \dfrac { 1 }{ 3 } \pi h({ R }^{ 2 }+{ r }^{ 2 }+Rr)$$
    Where $$h$$ is the height and $$R$$ and $$r$$ are the radii of the upper and lower ends of a frustum of a cone.
    Height $$h=6\ m$$
    Since, the reservoir is $$ 8 \  m $$ across the top, upper radius $$R= 4  \ m $$
    Similarly, lower radius $$r = 2  m $$

    So, volume of the reservoir $$ = \dfrac { 1 }{ 3 } \times \dfrac {22}{7} \times 6({ 4 }^{ 2 }+{ 2 }^{ 2 }+ 4 \times 2)\ m^3$$

                                                  $$ = \dfrac {22}{7} \times 2(16+4+ 8)\ m^3$$

                                                  $$ = \dfrac {22}{7} \times 2\times28\ m^3$$

                                                  $$ =  176\  {m}^{3} $$

    Hence, the volume of the reservoir is  $$   176\  {m}^{3} $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now