Self Studies

Surface Areas and Volumes Test - 24

Result Self Studies

Surface Areas and Volumes Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    A few blocks of wood are used to make the shape of a giraffe as shown below. What is the volume of wood used to make the giraffe?

    Solution
    Volume of one block $$A = 4\times 24\times 34=160 cm^3$$. 

    So, volume of 4 blocks of $$A$$ is $$640 cm^3$$.

    Length of block $$B$$ is $$18cm$$. 

    Width of block $$B$$ is $$4 cm$$ and height is $$10cm$$. 

    So, volume of block $$B$$ is $$18\times 10\times 4 = 720 cm^3$$.

    $$\therefore$$ The total volume is $$720 + 640 = 1360 cm^3$$
  • Question 2
    1 / -0
    How many small cubes, each of $$96\, cm^2$$ surface area can be formed from the material obtained by melting a larger cube of $$384\, cm^2$$ surface area ?
    Solution
    Let the side of a bigger cube be $$a\,cm$$ and that of smaller cube be $$b\, cm$$.

    Area of bigger cube$$=6a^2=384 cm^2$$         ...Given
    $$\therefore$$$$a=8\, cm$$

    Area of smaller cube$$=6b^2=96cm^2$$        ...Given
    $$\therefore$$$$b=4\, cm$$

    Number of cubes$$=\dfrac{\text {Volume of bigger cube}}{\text {Volume of smaller cube}}$$

    $$\therefore$$ Number of cubes$$=\dfrac{8\times 8 \times 8}{4 \times 4 \times 4}=8$$
  • Question 3
    1 / -0
    The adjacent diagram represents a frustum of a cone whose bottom and top radii are 6 cm and 3 cm, its height is 8 cm. There is a conical cavity to a height of 3 cm at the bottom. The amount of material in the solid is 

    Solution

    Volume of material $$=$$ Volume of frustum $$-$$ Vol. of cavity

                                     $$=\dfrac { 1 }{ 3 } \pi \left( { R }^{ 2 }+{ r }^{ 2 }+R.r \right) H-\dfrac { 1 }{ 3 } \pi { r }_{ 1 }^{ 2 }h$$

                                     $$=\dfrac { 1 }{ 3 } \pi \left[ { 6 }^{ 2 }+{ 3 }^{ 2 }+6\times 3 \right] \times 8-\dfrac { 1 }{ 3 } \pi \times 6\times 6\times 3$$

                                     $$=\dfrac { 1 }{ 3 } \pi \left[ 63\times 8-108 \right] =\dfrac { \pi  }{ 3 } \times \left[ 504-108 \right] $$

                                     $$=\dfrac { \pi  }{ 3 } \times 396=132\pi $$$${ cm }^{ 3 }$$
  • Question 4
    1 / -0
    Water flows at the rate of 10 m per min from  cylindrical pipe 5 mm in diameter. How long will it take to fill up a conical vessel whose diameter at the base is 40 cm and depth 24 cm ?
    Solution
    Volume of a  cone of Radius "R" and height "h" $$ = \dfrac{1}{3} \pi { R }^{

    2 }h $$


    Radius of the vessel $$ =\dfrac{40}{2} = 20  cm $$


    Hence, volume of the conical vessel $$ = \dfrac{1}{3} \pi \times 20 \times 20 \times 24 {cm}^{3} $$


    Radius of pipe $$ = \dfrac {5}{2}  mm = 2.5 mm = \dfrac {25}{100}  cm $$



    Since the pipe is cylindrical in shape, Volume $$ = \pi { (Radius) }^{ 2 } \times height $$



    Here, height is considered as the distance travelled.



    Hence, Volume of water coming out of pipe in one minute $$\displaystyle = \pi \times {(\frac

    {25}{100})}^{2} \times 1000  {cm}^{3} $$




    Now, $$\textbf{time taken to fill the cistern}$$


    $$\displaystyle=\frac { \textit{Volume  of  the vessel} }{\textit{ Volume  of  water  coming  out  of  pipe  in  one  minute} } =\frac { \frac { 1 }{ 3 } \pi \times 20\times 20\times 24 }{ \pi \times \frac { 25 }{ 100 } \times \frac { 25 }{ 100 } \times 1000 } =51\frac{1}{5}minutes = 51min 12 sec$$

  • Question 5
    1 / -0
    The height of a cone is $$30 cm$$. A frustum is out off from this cone by a plane parallel to the base of the cone. If the volume of the frustum is $$ \cfrac{1}{27}$$ of the volume of the cone, find the height of the frustum.
    Solution
    Lets consider a cone of Radius $$R$$. 
    Let a cone of height $$h$$ is cut off from the top of this cone whose base is parallel to the original cone. The radius of the the cone cut off be $$r$$.
    Here, $$H=30cm$$
    In $$\triangle APC$$ and $$\triangle AQE$$, $$PC\parallel QE$$
    Therefore,
    $$\triangle APC \sim \triangle AQE$$
    $$=>\cfrac{AP}{AQ}=\cfrac{PC}{QE}$$
    $$=>\cfrac{h}{H}=\cfrac{r}{R}$$    (I)

    Given, Volume of the cone$$ ABC$$$$=\cfrac{1}{27}$$Volume of the cone $$ADE$$
    $$=>\cfrac{\text {Volume of the cone ABC}}{\text {Volume of the cone ADE} }=\cfrac{1}{27}$$
    $$=>\cfrac { \cfrac { 1 }{ 3 } \pi r^{ 2 }h }{ \cfrac { 1 }{ 3 } \pi R^{ 2 }h } =\cfrac{1}{27}$$
    $$=>\left(\cfrac{r}{R}\right)^2\times \cfrac{h}{H}=\cfrac{1}{27}$$
    $$=>\left(\cfrac{h}{H}\right)^2\times \cfrac{h}{H}=\cfrac{1}{27}$$     ...(from (i))
    $$=>\left(\cfrac{h}{H}\right)^3=\cfrac{1}{27}$$
    $$=>\cfrac{h}{H}=\cfrac{1}{3}$$
    $$=>h=\cfrac{1}{3}H$$
    $$=>h=\cfrac{1}{3}\times 30cm$$
    $$=>h=10cm$$
    Now, $$PQ=H-h$$
          $$=30cm-10cm$$
          $$=20cm$$
    Hence, the section is cut at the height of $$20 cm$$ from the base.
  • Question 6
    1 / -0
    Two steel sheets each of length $$\displaystyle a_{1}$$ and breadth $$\displaystyle a_{2}$$ are used to prepare the surface of two right circular cylinders-one having volume $$\displaystyle V_{1}$$ and height $$\displaystyle a_{2}$$ and the other having volume $$\displaystyle V_{2}$$ and height $$\displaystyle a_{1}$$. Then
    Solution

    Let the radius of base of the cylinders be r and R
    $$\Rightarrow a_{1} = 2\pi r , a_{2} = 2\pi R$$
    $$ \Rightarrow r = \dfrac{a_{1}}{2\pi}, R = \dfrac{a_{2}}{2\pi}$$
    Also
    $$v_{1} = \pi r^2 a_{2} = \pi \left(\dfrac{a_{1}}{2\pi}\right)^2 a_{2}= \dfrac{a_{1}^2a_{2}}{4\pi}$$
    $$v_{2} = \pi R^2 a_{1} = \pi \left(\dfrac{a_{2}}{2\pi}\right)^2 a_{1}= \dfrac{a_{2}^2a_{1}}{4\pi}$$
    $$\Rightarrow \dfrac{v_{1}}{v_{2}} = \dfrac{\dfrac{a_{1}^2 a_{2}}{4\pi}}{\dfrac{a_{2}^2 a_{1}}{4\pi}} = \dfrac{a_{1}}{a_{2}}$$
    $$\Rightarrow \dfrac{v_{1}}{a_{1}} = \dfrac{v_{2}}{a_{2}} = a_{2}v_{1} = a_{1}v_{2}$$

  • Question 7
    1 / -0
    A frustum is made by joining edges of following figure. The volume of the frustum thus formed will be $$\displaystyle (\pi =22/7)$$ 

    Solution


    ar $${ C }_{ 1 }=3\times 120\times \dfrac { \pi  }{ 180 } =2\pi $$, ar $${ C }_{ 2 }=6\times 120\times \dfrac { \pi  }{ 180 } =4\pi $$

    $$2\pi { r }_{ 1 }=2\pi \Rightarrow { r }_{ 1 }=1,\quad { r }_{ 2 }=2$$

    Volume of frustum $$=\dfrac { 1 }{ 3 } \pi { r }_{ 2 }^{ 2 }\times 4\sqrt { 2 } -\dfrac { 1 }{ 3 } \pi { r }_{ 1 }^{ 2 }\times 2\sqrt { 2 } $$

                                    $$=\dfrac { 1 }{ 3 } \left( \pi \times { 2 }^{ 2 }\times 4\sqrt { 2 } -\pi \times { 1 }^{ 2 }\times 2\sqrt { 2 }  \right) $$

                                    $$=\dfrac { 1 }{ 3 } \left( 16\sqrt { 2 } \pi -2\sqrt { 2 } \pi  \right) =\dfrac { 1 }{ 3 } \times 14\sqrt { 2 } \times \dfrac { 22 }{ 7 } =\dfrac { 44\sqrt { 2 }  }{ 3 } $$

  • Question 8
    1 / -0
    A metallic solid cone is melted and cast into a cylinder of the same base as that of the cone. If the height of the cylinder is $$7\;cm$$, what was the height of the cone?
    Solution
    When a solid of one shape is melted into another shape, the amount of volume remains the same.
    Volume of cone $$=$$ Volume of cylinder
                      $$\dfrac { 1 }{ 3 } \pi { r }_{ 1 }^{ 2 }{ h }_{ 1 }=\pi { r }_{ 2 }^{ 2 }{ h }_{ 2 }$$
    $$\Rightarrow \quad \dfrac { 1 }{ 3 } \times { r }^{ 2 }\times { h }_{ 1 }={ r }^{ 2 }\times 7\quad \left[ { r }_{ 1 }={ r }_{ 2 }=r \right ] $$ as same base
                      $$\Rightarrow \quad { h }_{ 1 }=7\times 3=21cm$$
    Therefore, height of cone is $$21$$ cm.
  • Question 9
    1 / -0
    Two solid cylinders are $$12\;cm\;and\;18\;cm$$ in height. Their diameters are $$12\;cm\;and\;16\;cm$$ respectively. Both the cylinders are melted and the material is moulded into a solid right circular cone of height $$33\;cm$$. Find its diameter.
    Solution
    $$Volume of cone = Sum of volumes of two cylinders$$

    $$\Rightarrow \quad \dfrac { 1 }{ 3 } \pi { R }^{ 2 }H=\pi { r }_{ 1 }^{ 2 }{ h }_{ 1 }+\pi { r }_{ 2 }^{ 2 }{ h }_{ 2 }\Rightarrow \dfrac { 1 }{ 3 } \pi \times R^{ 2 }\times 33=\pi \left( 6\times 6\times 12+8\times 8\times 18 \right) $$

    $$\Rightarrow \quad 11{ R }^{ 2 }=432+1152\Rightarrow { R }^{ 2 }=144\Rightarrow R=\sqrt { 144 } =12cm$$

    Therefore, diameter of cone is $$12$$$$\times $$ $$2$$ $$=$$ $$24$$cm.
  • Question 10
    1 / -0
    The diameter of one of the bases of a truncated cone is $$100\ mm$$. If the diameter of this base is increased by $$21 \%$$ such that it still remains a truncated cone with the height and the other base unchanged, the volume also increases by $$21 \% $$. The radius of the other base is
    Solution
    Let initially $$2$$ bases have a radii $$50\ mm=5\ cm$$ and $$r$$ , and finally bases have radii $$(1.21 \times 5)$$ and $$r.$$ Also, let the height of the truncated cone be $$h$$ which is fixed.

    $$\therefore$$ Ratios of volume $$= \dfrac {V_2} {V_1}$$
                                     $$ = 1.21 $$

    $$V_2 = \dfrac {\pi h} {3} ((6.50)^2 + 6.05 r + r^2) $$

    $$V_1 = \dfrac {\pi h} {3} (5^2 + 5 r + r^2 ) $$

    $$\dfrac {V_2} {V_1} = 1.21$$
    $$ \Rightarrow \dfrac {(6.05)^2 + 6.05 r + r^2} {5^2 + 5 r + r^2} = 1.21 $$

    $$\Rightarrow 36.6025 + 6.05 r + r^2 = 30.25 + 6.05 r + 1.21 r^2 $$

    $$\Rightarrow 21r^2 = 6.3525 $$

    $$\Rightarrow r^2 = \dfrac {6.3525} {21} $$

    $$\Rightarrow r = \dfrac {11} {2}\ cm$$

    $$\Rightarrow r = 55\ mm $$

    Hence, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now