Self Studies

Surface Areas and Volumes Test - 26

Result Self Studies

Surface Areas and Volumes Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of top and bottom faces of a frustum are 16 $$\displaystyle cm^{2}$$ and 36 $$\displaystyle cm^{2}$$. If the frustum is 30 cm high its volume is
    Solution
    $$\displaystyle V=\dfrac{1}{3}\times 30\left ( 16+36+\sqrt{16\times 36} \right )cm^{3}=760cm^{3}$$
  • Question 2
    1 / -0
    The radii of top and bottom faces of a frustum are $$8$$ $$cm$$ and $$16$$ $$cm$$ and its height is $$15$$ $$cm.$$ The area of curved surface of the frustum is (Use $$\displaystyle \pi =3.14$$)
  • Question 3
    1 / -0
    A cone is divided into two parts by drawing a plane through a point which divides its height in the ratio $$1:2$$ starting from the vertex and the plane is parallel to the base. Find the ratio of the volume of the two parts.
    Solution

    Let the plane XY divide the height AD of cone ABC such that $$AE:ED=1:2$$,
     where AED is the axis of the cone. Let $$r_2$$ and $$r_1$$ be the radii of the circular section XY and the base BC of the cone respectively and let $$h_ 1h$$ and $$h_1$$ be their heights.
    $$\quad \displaystyle\dfrac{h_1}{h} = \displaystyle\dfrac{3}{2}$$
    $$ \Rightarrow h_1 = \displaystyle\dfrac{3}{2}h$$
    $$\dfrac{r_1}{r_2} = \displaystyle\dfrac{h_1}{h_1-h} = \displaystyle\dfrac{\displaystyle\dfrac{3}{2}h}{\displaystyle\dfrac{1}{2}h} = 3$$
    Volume of the cone AXY=$$ \displaystyle\dfrac{1}{3}\pi r_2^2(h_1 - h)$$
                                      $$= \displaystyle\dfrac{1}{3}\pi r_2^2(\displaystyle\dfrac{3}{2}h - h)$$
                                      $$= \displaystyle\dfrac{1}{6}\pi r_2^2h$$
    VolumeoffrustumXYBC=$$\dfrac { 1 }{ 3 } \pi h(r_{ 1 }^{ 2 }+r_{ 2 }^{ 2 }+r_{ 1 }r_{ 2 })$$
                                           =$$\dfrac { 1 }{ 3 } \pi h(9r_{ 2 }^{ 2 }+r_{ 2 }^{ 2 }+3r_{ 2 }^{ 2 })$$
                                            =$$\dfrac { 1 }{ 3 } \pi h(13r_{ 2 }^{ 2 })$$
    $$\displaystyle\dfrac{\mbox{Volume of cone AXY}}{\mbox{Volume of cone XYBC}} = \displaystyle\dfrac{\displaystyle\dfrac{1}{6}\pi r_2^2h}{\displaystyle\dfrac{13}{3}\pi r_2^2h}$$
                                               $$ = \displaystyle\dfrac{1}{26}$$
    The ratio between the volume of the cone AXY and the remaining portion BCXY is $$1:26$$

  • Question 4
    1 / -0
    A right-angled triangle whose sides are 15 cm and 20 cm, is made to revolve about its hypotenuse. Find the volume and the surface area of the double cone so formed. [Take $$\pi \simeq 3.14]$$
    Solution
    Let ABC be the right triangle, right angled triangle at A, whose sides AB and AC measures 6 cm and 8 cm respectively.
    $$\therefore$$ Hypotenuse $$BC=\sqrt {(15)^2+(20)^2}$$
    $$=\sqrt {225}=25 cm$$
    AO(A'O) is the radius of the common base of the double cone fanned by revolving the triangle around BC.
    Area of $$\Delta ABC=\dfrac {1}{2}\times 15\times 20=\dfrac {1}{2}BC\times AO$$.
    $$\Rightarrow 150=\dfrac {1}{2}\times 25\times AO$$
    $$\Rightarrow AO=12 cm$$
    Volume of the double cone
    $$=\dfrac {1}{3}\pi \times AO^2\times BO+\dfrac {1}{3}\pi \times AO^2\times CO$$
    $$=\dfrac {1}{3}\pi \times AO^2(BO+CO)$$
    $$=\dfrac {1}{3}\pi \times AO^2\times BC$$
    $$=\dfrac {1}{3}\times 3.14\times 12\times 12\times 25=3768 cm^3$$
    Surface area of the double cone
    $$=\pi \times AO\times AB+\pi \times AO\times AC$$
    $$=\pi \times AO(AB+AC)$$
    $$=3.14\times 12\times (15+20)$$
    $$=3.14\times 12\times 35=1318.8 cm^2$$
  • Question 5
    1 / -0
    A cylindrical container of radius 6 cm and height 15 cm is fulled with ice-cream. The whole ice-cream has to be distributed to 10 children in equal cones with hemispherical tops. If the height of the conical portion is four times the radius of its base, find the radius of the ice-cream cone
    Solution
    Given, Radius of cylindrical container $$=6 cm$$
    Height of cylindrical container $$=15 cm$$

    Volume of cylinder $$=\pi r^2h$$
    $$=\pi \times 36\times 15$$
    $$=540 \pi cm^3$$

    Now, as it has to be divided among 10 children
    $$\therefore$$ Dividing volume by $$10=\dfrac {540}{10}=54 \pi cm^3$$

    Volume of cone + Volume of hemispherical top $$=$$ Volume of ice-cream in it.
    $$\Rightarrow \dfrac {1}{3}\pi r^2h+\dfrac {2}{3}\pi r^3=\pi r^2h$$

    $$\Rightarrow \dfrac {1}{3}\pi r^2(4r)+\dfrac {2}{3}\pi r^3=54 \pi$$

    $$\Rightarrow \dfrac {1}{3}\pi r^3(4+2)=54\pi$$

    $$\Rightarrow 2r^3=54\Rightarrow r=3$$

    Hence, the radius of icecream cone $$=3\ cm$$.

  • Question 6
    1 / -0
    A circus tent is cylindrical to a height of 6 m and conical above it. If its diameter is 105 m and slant height of the conical portion is 50 m then the total area of canvas required to build the tent is (Use $$\displaystyle \pi =22/7$$) :
    Solution
    The tent has two parts 
    (I) a cylindrical part and (II) a conical part 
    (I) curved surface area of cylindrical portion 
    $$\displaystyle =2\pi rh$$
    $$\displaystyle 2\times \frac{22}{7}\times \frac{105}{2}\times 6m^{2}$$
    =1980 $$\displaystyle m^{2}$$
    (II) Curved sufrace area of conical portion 
    $$\displaystyle \pi rl$$
    $$\displaystyle \frac{22}{7}\times \frac{105}{2}\times 50m^{2}$$
    $$\displaystyle =8250m^{2}$$
    $$\displaystyle \therefore $$ Total area of canvas required to build the tent 
    =Curved surface area of conical portion 
    $$\displaystyle =1980m^{2}+8250m^{2}=10230m^{2}$$

  • Question 7
    1 / -0
    The slant height of the right circular cone is $$10$$cm and its height in $$8$$cm  It is cut by plane parallel to its base passing through the mid-point of the height The ratio of the volume cone to that of the frustum of the cone cut is 
    Solution
    It is given that
    $$OM = 8, OP = 4, and OB = 10$$
    $$\displaystyle \therefore BM^{2}=OB^{2}=OM^{2}$$
    $$\displaystyle =100-64=36$$
    $$\displaystyle \Rightarrow PM=6$$ so that $$PC = 3$$
    Now volume of cone OAB
    $$\displaystyle =\frac{1}{3}.\pi .6^{2}.8=96\pi $$
    Volume of cone OCD $$\displaystyle =\frac{1}{3}.\pi .3^{2}.4=12\pi $$
    $$\displaystyle \therefore $$ Volume of frustum $$\displaystyle ABCD=96\pi -12\pi =84\pi $$
    Reqd. ratio $$\displaystyle =\frac{96\pi }{84\pi }=\frac{8}{7}\Rightarrow 8:7$$
  • Question 8
    1 / -0
    A copper sphere of diameter $$6\ m$$ is drawn into a wire of diameter $$0.4\ cm$$. The length of the wire is
    Solution
    Radius of wire$$=\dfrac{0.4}{2}=0.2\ cm$$
    Radius of sphere$$=\dfrac{6}{2}=3\ m$$
    Volume of wire (cyl) $$=$$ Vol of sphere 

    $$\displaystyle \Rightarrow \pi \times \left ( 0.2 \right )^{2}\times h=\dfrac{4}{3}\times \pi \times 3^{3}$$
    $$\displaystyle\Rightarrow h=900\ cm = 9\ m $$
  • Question 9
    1 / -0
    Three solid spheres of radius $$1\text{ cm},\;6\text{ cm}$$ and $$8\text{ cm}$$, respectively are melted together and cast into a single sphere. The radius $$r$$ of this sphere will be 
    Solution
    Let $$r_1=1 \text{ cm},\;r_2=6 \text{ cm}$$ and $$r_3=8 \text{ cm}.$$

    According to the question,
    The volume of three spheres $$=$$ The volume of the new sphere

    $$\begin{aligned}{}\frac{4}{3}\pi {r_1}^3 + \frac{4}{3}\pi {r_2}^3 + \frac{4}{3}\pi {r_3}^3& = \frac{4}{3}\pi {r^3}\\{\left( 1 \right)^3} + {\left( 6 \right)^3} + {\left( 8 \right)^3} &= {r^3}\\1 + 216 + 512& = {r^3}\\{r^3} &= 729\\r^3 &= {\left( 9 \right)^3}\\r &= 9\text{ cm}\end{aligned}$$

    Hence, the radius of the resulting sphere is $$9 \text{ cm}.$$
  • Question 10
    1 / -0
    Volume of the solid shown above is

    Solution
    Here we have two solids combined together

    Given solid is the combination of a bigger cuboid and a smaller cuboid

    Length of the bigger cuboid $$AF = (5 + 4)\ cm = 9\ cm$$

    and width of the smaller cuboid $$DH = AE = 22\ cm$$

    Total volume of solid $$=$$ volume of bigger cuboid $$+$$ volume of smaller cuboid

                                       $$= (22 \times 2 \times 9 + 4 \times 4 \times 22) $$ $$\displaystyle cm^{3}$$ 

                                       $$\displaystyle=748\ cm^{3}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now