Self Studies

Surface Areas and Volumes Test - 30

Result Self Studies

Surface Areas and Volumes Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The volume of the frustum of a cone is 313 cm$$^3$$. The bottom and top radius are 0.2 cm and 0.1 cm. Find its height. (Use $$\pi$$ = 3.14). Round off your answer to nearest whole number. 

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    R = 0.2 cm, r = 0.1 cm, h = ?

    Volume = 313 $$cm^3$$

    $$313 = (3.14 \times h)/(3)[0.2^2 + 0.2 \times 0.1 + 0.1^2]$$

    $$313 \times 3/3.14 = h[0.04 + 0.02 + 0.01]$$

    $$299.044 = h[0.07]$$

    $$4,272 = h$$

    $$h = 4,272\, cm$$

  • Question 2
    1 / -0
    The volume of the frustum of a cone is 690.21 m$$^3$$. The bottom and top diameters are 12 m and 8 m. Find its height. (Use $$\pi$$ = 3). Round off your answer to nearest whole number. 

    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$
    Let us consider D is the bottom diameter and d is top diameter

    D = 12 m, d = 8 m, h = ?

    Volume = 690.21 m$$^3$$

    $$Diameter = radius / 2$$

    $$R = 6 m$$, r = 4 m 

    $$690.21 = (3\times h)/(3)[6^2+6\times 4 +  4^2]$$

    $$690.21= h[36 + 24 + 16]$$

    $$690.21 = h[76]$$

    $$h = 690.21 / 76$$

    $$h = 9 m$$

  • Question 3
    1 / -0
    Calculate the volume of a frustum cone given below: (Use $$\pi$$
    = 3.14) 

    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    D = 15 cm, r = 1 cm, h = 120 cm

    Diameter = radius / 2

    R = 30 cm

    $$V = (3.14 \times 120)/(3)[30^2 + 30\times 1 + 1^2]$$

        $$= 3.14 \times 40[900 + 24 + 4]$$

        $$= 125.6[928]$$

       $$= 116,556.8 \,cm^3$$

  • Question 4
    1 / -0
    The volume of the frustum of a cone is 4,200 mm$$^3$$. The bottom and top radius are R = 20 mm and r = 10 mm. Find its height. (Use $$\pi$$ = 3). Round off your answer to nearest whole number. 
    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    R = 20 mm, r = 10 mm, h = ?

    Volume = 4,200 mm$$^3$$    

    $$4,200 = (3 \times h)/(3)[20^2 + 20 \times 10 + 10^2]$$

    $$4,200 = h[400 + 200 + 100]$$

    $$4,200 = h[700]$$

    $$\frac{4,200}{700} = h$$

    h = 6 mm

  • Question 5
    1 / -0
    Find the curved surface area of frustum cone radii 2.5 and 1.2 cm and a slant height 12.5 cm.
    Solution

    Curved surface area = $$\pi$$(R + r)s

    = $$\pi (2.5 + 1.2) \times 12.5$$

    = $$\pi (3.7) \times 12.5$$

    = 46.25 $$\pi cm^2$$

  • Question 6
    1 / -0
    Calculate the volume of a frustum cone given below: (Use = 3.14) 

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    R = 12 m, r = 2 m, h = 45 m

    $$V = (3.14 \times 45)/(3)[12^2 + 12 \times 2 + 2^2]$$

        $$= 3.14 \times 15[144 + 24 + 4]$$

        $$= 47.1[172]$$

        $$= 8,101.2\, m^3$$

  • Question 7
    1 / -0
    Find the curved surface area of frustum cone radii $$12$$ and $$6$$ cm and a slant height $$20$$ cm.
    Solution

    Curved surface area of frustum of a cone$$= \pi(R + r)l$$

    $$=\pi (12 + 6) \times 20$$

    $$=\pi (18) \times 20$$

    $$=360\pi ~cm^2$$

  • Question 8
    1 / -0
    The height of the frustum cone is $$18$$ in. The area of the top and bottom circle of the cone is $$4$$ in$$^2$$ and $$16$$ in$$^2$$ respectively. Find its volume. 

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[\pi R^2 + \pi r^2 + \pi R r$$]

    Area of the top cone = 4 in$$^2$$

    Area of the bottom cone = 16 in$$^2$$

    Height $$= 18$$in

    Volume $$=$$ $$\displaystyle{\frac{18}{3}}[16 + 4 + \sqrt{16*4}$$]

    $$= 6[20 + \sqrt{64}]$$

    $$= 6[20 + 8]$$

    $$= 6 \times 28$$

    $$=168\, in^3$$

  • Question 9
    1 / -0
    The height of the frustum cone is 12 ft. The area of the top and bottom circle of the cone is 4 ft$$^2$$ and 4 ft$$^2$$ respectively. Find its volume. 

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[\pi R^2 + \pi r^2 + \sqrt{(\pi R^2)(\pi r^2)}$$]
     
    Area of the top cone = 4 ft$$^2$$

    Area of the bottom cone = 4 ft$$^2$$

    Height = 12 ft

    Volume = $$\displaystyle{\frac{12}{3}}[4 + 4 + \sqrt{4* 4}$$]

    = 4[8 + $$\sqrt{16}$$] 

    = 4[8 + 4]

    = 4 [8 + 4]

    = 4 x 32

    = 128 ft$$^3$$

  • Question 10
    1 / -0
    The volume of the frustum of a cone is 1,200 mm$$^3$$. The bottom and top radius are D = 5 mm and d = 1 mm. Find its height. (Use $$\pi$$ = 3). 
    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$ 

    D = 5 mm, d = 1 mm, h = ?

    Diameter = radius/2

    Radius, R = 10 mm, r = 2mm

    Volume = 1,200 mm$$^3$$

    $$1,200 = (3 \times h)/(3)[10^2 + 10 \times 2 + 2^2]$$

    $$1,200 = h[100 + 20 + 4]$$

    $$1,200 = h[124]$$

    $$\frac{1,200}{124} = h$$

    $$h = 9.67 \,mm$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now