Self Studies

Surface Areas and Volumes Test - 35

Result Self Studies

Surface Areas and Volumes Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the surface area of a frustum of cone given below: (Use $$\pi$$ = 3)

    Solution
    Surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    D = 4 cm, d = 5 cm, s = 50 cm

    Diameter = radius/2

    Radius, R = 8 cm, r = 10 cm

    $$= \pi(10 + 8)50 +\pi 10^2 + 8^2$$

    $$= 3 \times (900 + 100 + 64)$$

    $$= 3 \times (1,064)$$

    $$= 3,192\, cm^2$$

  • Question 2
    1 / -0

    The frustum cone curved surface area is 2,489 $$m^2$$. The upper and lower circle area of a cone is 24 and 45 m. Find the total surface area.

    Solution

    Total surface area = $$\pi (R+r)s + A_1 + A_2 $$

    Curved surface area = $$\pi (R + r)s \Rightarrow 2,489 m^2$$

    $$A_1 = 45 m, A_2 = 24 m$$

    Therefore, Total surface area $$= 2,489 + 45 + 24$$

    TSA = 2,558 $$m^3$$

  • Question 3
    1 / -0

    The frustum cone curved surface area is 230 $$\pi cm^2$$. The upper and lower circle area of a cone is 12.5 and 16.5 cm. Find the total surface area. (Use $$\pi$$ = 3.14).

    Solution

    Total surface area = $$\pi (R+r)s + A_1 + A_2 $$

    Curved surface area = $$\pi (R + r)s \Rightarrow 230 \pi m^2$$

    $$A_1 = 12.5 cm, A_2 = 16.5 cm$$

    Therefore, Total surface area =$$ 230 \times 3.14 + 12.5 +16.5$$

    TSA = 751.2 $$cm^3$$

  • Question 4
    1 / -0

    The lateral area of the frustum of a right circular cone is equal to______________.

    Solution
    The lateral area of the frustum of a right circular cone is equal to one-half the sum of the circumference of the bases multiplied by slant height. 
    Lateral area of the frustum cone $$= \dfrac{1}{2} (2\pi R + 2\pi r) l$$

  • Question 5
    1 / -0

    The lateral area of the frustum of a right circular cone is calculated by using the formula _________________.

    Solution
    The lateral area of the frustum of a right circular cone is equal to one-half of the sum of the circumferences of the bases multiplied by slant height.
    Lateral area$$=\cfrac { 1 }{ 2 } \left( 2\pi R+2\pi r \right) l$$
                        $$=\left( \pi R+\pi r \right) l$$
                        $$=\pi\left(  R+ r \right) l$$
  • Question 6
    1 / -0
    Find the surface area of a frustum of cone given below: (Use $$\pi$$ = 3.14) 

    Solution
    Surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    D = 0.2 in, d = 0.1 in, s = 0.8 in

    Diameter = radius/2

    Radius, R = 0.4 in, r = 0.2 in

    = $$\pi$$(0.2 + 0.4)0.8 +$$\pi$$0.2$$^2$$ + $$\pi$$0.4$$^2$$

    $$= 3.14 \times (0.48 + 0.04 + 0.16)$$

    $$= 3.14 \times (0.68)$$

    $$= 2.1352\, in^2$$

  • Question 7
    1 / -0
    Find the surface area of a frustum of cone given below: (Use $$\pi$$ = 3.14)

    Solution
    Surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    D = 10 ft, d = 5 ft, s = 100 ft

    Diameter = radius/2

    Radius, R = 20 ft, r = 10 ft

    = $$\pi$$(10 + 10)100 + $$\pi$$10$$^2$$ + $$\pi$$20$$^2$$

    = 3.14 $$\times$$ (2,000 + 100 + 400)

    = 3.14 $$\times$$ (2,500)

    = 7,850 ft$$^2$$
  • Question 8
    1 / -0
    The surface area of a frustum cone is 11,000 cm2. The larger and smaller radius of the cone is 10 and 5 cm. find its slant height. (Use $$\pi$$ = 22/7)
    Solution
    Surface area of a frustum of cone  $$=\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    R = 10cm, r = 5cm, SA = 11,000 cm2

    11,000 $$=$$ 22/7 $$\times$$ (5 +10)s +$$\pi$$5$$^2$$ + $$\pi$$10$$^2$$

    11,000 $$=$$ 22/7 $$\times$$ [15s +25 + 100]

    11,000 $$=$$ 22/7 $$\times$$ [15s +125]

    11,000 $$\times$$ 7/22$$=$$ 15s + 125

    3,500 125$$=$$ 15s

    3,375/15 $$=$$ s

    $$=$$ 225 cm

    Therefore, the slant height is 225 cm.

  • Question 9
    1 / -0
    The circumference of lower and upper bases of the frustum cone is 250 and 120 cm. The slant height is 12 cm. Find the curved surface area.
    Solution

    Curved surface area of the frustum cone = $$\displaystyle \frac{1}{2}  (2\pi R + 2\pi r) l$$

                                                                         $$= \displaystyle \frac{1}{2} (250 + 120) \times 12$$ 

                                                                         $$= 370 \times 6$$

                                                                         $$= 2,220$$ $$cm^2$$

  • Question 10
    1 / -0
    Find the surface area of a frustum of cone, whose larger and smaller radius is 10 and 2 mm. The slant height of the cone is 15 mm.
    Solution
    Surface area of a frustum of cone = $$\pi$$$$(r + R)s + $$$$\pi$$$$r$$$$^2$$$$ + $$$$\pi$$$$R$$$$^2$$

    $$R = 10 mm$$, $$r = 2 mm$$, $$s = 15 mm$$

    $$SA = (2 + 10)*15 +2 + 10$$

          $$= \pi(12)15 + 4\pi + 100\pi$$

          $$= \pi(180 + 4 + 100)$$

          $$= 284\pi$$ mm$$^2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now