Self Studies

Surface Areas and Volumes Test - 38

Result Self Studies

Surface Areas and Volumes Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the slant height of a frustum cone whose top radius is 5 m and bottom radius is 12 m. The height of the cone is 24 m.
    Solution

    Slant height, $$L^2 = h^2 + (R -  r)^2$$

    $$L^2 = {24}^2 + (12 - 5)^2$$

    $$L^2 = 576 + 49$$

    $$L^2 = 625$$

    Squaring on both sides, we get

    L = 25 m

  • Question 2
    1 / -0
    The larger and smaller diameter of a cone is 35 m and 15 m. The slant height of the cone is 210 m. What is the surface area of a frustum of cone? 
    (Use $$\pi$$ = 22/7). 
    Solution
    Surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    Diameter = radius/2

    Radius, R = 70 m, r = 30 m, slant height, s = 210 m

    SA = $$\pi$$(70 + 30)210 + $$\pi$$30$$^2$$ + $$\pi$$70$$^2$$

    = $$\pi$$(100)210 + 900$$\pi$$ + 4900$$\pi$$

    = 22/7 $$\times$$ (21000 + 900 + 4900)

    = 22/7 $$\times$$ 26,800

    = 84,228.57 m$$^2$$

  • Question 3
    1 / -0
    The larger radius of a frustum cone is thrice the smaller radius which is 12 m. The slant height of the cone is 120 m. What is the surface area? (Use $$\pi$$ = 3.14). 
    Solution
    Surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    Larger radius = 3 $$\times$$ smaller radius $$\Rightarrow$$ 3 $$\times$$ 12 = 36m 

    Smaller radius = 12 m

    s = 120 m

    SA = $$\pi$$(12 + 36)120 + $$\pi$$12$$^2$$ + $$\pi$$36$$^2$$

    = $$\pi$$(48)*120 + 144$$\pi$$ + 1,296$$\pi$$

    = 3.14 $$\times$$ (5,760 + 144 + 1,296)

    = 3.14 $$\times$$ 7,200

    = 22,608 m$$^2$$

  • Question 4
    1 / -0
    The larger radius of a frustum cone is double the smaller radius which is 12 in. The slant height of the cone is 40 in. What is the surface area? (Use $$\pi$$ = 3.14).
    Solution
    Surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    Larger radius = 2 $$\times$$ smaller radius$$\Rightarrow$$ 2 $$\times$$ 12 = 24 in

    Smaller radius = 12 in

    s = 40 in

    SA = $$\pi$$(12 + 24)40 + $$\pi$$12$$^2$$ + $$\pi$$24$$^2$$

    = $$\pi$$(36)40 + 144$$\pi$$ + 576$$\pi$$

    = 3.14 $$\times$$ (1,440 + 144 + 576)

    = 3.14 $$\times$$ 2,160

    = 6,782.4 in$$^2$$
  • Question 5
    1 / -0
    The smaller diameter of a frustum cone is thrice the larger radius which is 4 in. The slant height of the cone is 13 in. What is the surface area? (Use $$\pi$$ = 3). 
    Solution
    Surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    Larger radius = 4 in

    Smaller diameter = 3$$\times$$ larger radius $$\Rightarrow$$ 3 $$\times$$ 4 =12 in

    Smaller radius = 24 in

    s = 13 in

    SA = $$\pi$$(24 + 4)13 + $$\pi$$24$$^2$$ + $$\pi$$4$$^2$$

    = $$\pi$$(28)13 + 576$$\pi$$ + 16$$\pi$$ 

    = 3 $$\times$$ (364 + 576 + 16)

    = 3 $$\times$$ 956

    = 2,868 in$$^2$$ 

  • Question 6
    1 / -0
    Calculate the total surface area of frustum cone given below :

    Solution
    Total surface area = $$\pi (R+r)s + \pi R^2 + \pi r^2$$
    = $$\pi (4 + 1)10 + \pi 4^2 + \pi 1^2$$

    = $$50 \pi + 16 \pi + \pi$$

    = $$67 \pi cm^2$$

  • Question 7
    1 / -0
    Find the slant height of a frustum cone whose top radius is 12 cm and bottom radius is 7 cm. The height of the cone is 12 cm.
    Solution

    Formula of slant height is given by  $$L^2 = h^2 + (R -  r)^2$$

    Given $$h = 12\ cm , R = 12\ cm, r = 7 \ cm$$

    by substituting the values we get:

    $$L^2 = {12}^2 + (12 - 7)^2$$

    $$L^2 = 144 + 25$$

    $$L^2 = 169$$

    $$L = 13 \ cm$$

  • Question 8
    1 / -0

    Calculate the total surface area of a frustum cone:

    Given D = 2 cm, d = 1 cm, s = 10 cm.

    Solution
    Total surface area = $$\pi (R+ r)s + \pi R^2 + \pi r^2$$
    Diameter = radius $$\times 2$$
    Radius, R = 1 cm, r = 0.5 cm
    = 3.14 (1 + 0.5)*10 + π* $$1^2$$ π* $$0.5^2$$
    = $$3.14 \times 15 + 3.14 \times 1 + 0.25 \times 3.14$$
    = $$ 51.025  {cm}^2$$ 
  • Question 9
    1 / -0
    The curved surface area of a frustum cone is 250 m$$^2$$. The larger circle area is 120 m$$^2$$. The total surface area is 1000 m$$^2$$. Find the smaller circle area of a cone. 
    Solution
    Curved surface area of a frustum cone  $$=\pi$$(r + R)s $$\Rightarrow$$ 250 m$$^2$$
    Surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$ $$\Rightarrow$$ 1000 m$$^2$$

    Larger circle area = $$\pi$$R$$^2$$ $$\Rightarrow$$ 120 m$$^2$$

    Smaller circle area = $$\pi$$r$$^2$$ $$\Rightarrow$$ ?

    Therefore,
    SA = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$ 

    100 = 250 + Area of smaller circle + 120

    1000 =  250
    120 = Area of smaller circle 

    Area of smaller circle of a frustum cone = 630 m$$^2$$

  • Question 10
    1 / -0

    Calculate the curved surface area of a frustum cone given below :

    Solution

    Curved surface area = $$ \pi (R + r) l $$

    $$\pi (3+1)\times 10$$

    = $$3.14 \times 4 \times 10$$

    = 125.6 $$in^2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now