Self Studies

Surface Areas and Volumes Test - 40

Result Self Studies

Surface Areas and Volumes Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    A vessel is in the form of a frustum of a cone. Its radius at top end is $$10\ inch$$ and the height is $$12\ inch$$. Its volume is $$1200\pi\ {inch}^3$$.  Find its bottom radius.

    Solution

    Volume of a frustum cone $$= \displaystyle \frac{\pi h}{3} (R^2 + Rr + r^2)$$

    $$\displaystyle 1,200 \pi = \frac{\pi \times 12}{3} (10^2 + 10 \times r + r^2)$$

    $$100 \times 3 = (144 + 10r + r^2)$$

    $$300 - 144 = 10r + r^2$$

    $$r^2 + 10r - 156 = 0$$

    On factoring, we get 

    $$(r - 8.4) (r + 18.45) = 0$$

    $$r = 8.4, -18.45$$

    Since $$r$$ cannot be negative, thus the bottom radius is $$8.4$$ inches.

  • Question 2
    1 / -0
    The curved surface area of a frustum cone is 34.7 in$$^2$$. The smaller  circle area is 15.8 in$$^2$$. The total surface area is 70.5 in$$^2$$. Find the larger circle area of a cone. 
    Solution

    Curved surface area of a frustum cone = $$\pi$$(r + R)s $$\Rightarrow$$  34.7 in$$^2$$

    Total surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$ $$\Rightarrow$$ 70.5 in$$^2$$

    Smaller circle area = $$\pi$$r$$^2$$ $$\Rightarrow$$  15.8 in

    Larger circle area = $$\pi$$R$$^2$$ $$\Rightarrow$$  ?

    Therefore,

    SA = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    70.5 = 34.7 + Area of larger circle + 15.8

    70.5 - 34.7 - 15.8 = Area of larger circle

    Area of larger circle of a frustum cone = 20 in$$^2$$

  • Question 3
    1 / -0
    The total surface area of a frustum cone is 1,200 m$$^2$$. The area of larger and smaller circle is 120 and 100 m$$^2$$. Find the curved surface area of a cone. 
    Solution

    Curved surface area of a frustum cone = $$\pi$$(r + R)s $$\Rightarrow$$  ?

    Total surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$ $$\Rightarrow$$  1,200 m$$^2$$

    Smaller circle area = $$\pi$$r$$^2$$ $$\Rightarrow$$  100 m$$^2$$

    Larger circle area = $$\pi$$R$$^2$$$$\Rightarrow$$  120 m$$^2$$

    Therefore,

    SA = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    1,200 = Curved surface area + 100 + 120

    $$1,200 - 100 - 120 =$$ Curved surface area

    Curved surface area of a frustum cone = 980 m$$^2$$

  • Question 4
    1 / -0
    The curved surface area of a frustum cone is 250 mm$$^2$$. The smaller circle area is 35 mm$$^2$$. The total surface area is 450 mm$$^2$$. Find the larger circle area of a cone. 
    Solution

    Curved surface area of a frustum cone = $$\pi$$(r + R)s $$\Rightarrow$$  250 mm$$^2$$

    Total surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$ $$\Rightarrow$$  450 mm$$^2$$ 

    Smaller circle area = $$\pi$$r$$^2$$ $$\Rightarrow$$  35 mm$$^2$$

    Larger circle area = $$\pi$$R$$^2$$ $$\Rightarrow$$  ?

    Therefore, 

    SA = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    $$450 = 250 $$+ Area of larger circle + 35

    $$450 - 250 - 35 = $$Area of larger circle 

    Area of larger circle of a frustum cone = 165 mm$$^2$$

  • Question 5
    1 / -0
    The curved surface area of a frustum cone is 25$$\pi$$ mm$$^2$$. The larger circle area is 12$$\pi$$ mm$$^2$$. The total surface area is $$350 \pi$$ mm$$^2$$. Find the smaller circle area of a cone.
    Solution

    Curved surface area of a frustum cone = $$\pi$$(r + R)s $$\Rightarrow$$ 25$$\pi$$ mm$$^2$$

    Total surface area of a frustum of cone = $$\pi$$(r + R)s+ $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$ $$\Rightarrow$$ 350$$\pi$$ mm$$^2$$

    Larger circle area = $$\pi$$R$$^2$$ $$\Rightarrow$$  12$$\pi$$ mm$$^2$$

    Smaller circle area = $$\pi$$r$$^2$$ $$\Rightarrow$$  ?

    Therefore, SA = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    350$$\pi$$ = 25$$\pi$$ + Area of smaller circle + 12$$\pi$$

    350$$\pi$$ - 25$$\pi$$- 12$$\pi$$ = Area of smaller circle 

    Area of smaller circle of a frustum cone = 313$$\pi$$ mm$$^2$$

  • Question 6
    1 / -0
    The curved surface area of a frustum cone is 2.34 cm$$^2$$. The larger circle area is 12.5 cm$$^2$$. The total surface area is 25.8 cm$$^2$$. Find the smaller circle area of a cone.
    Solution

    Curved surface area of a frustum cone = $$\pi$$(r + R)s $$\Rightarrow$$ 2.34 cm$$^2$$

    Total surface area of a frustum of cone  $$=\pi$$ (r + R)s + $$\pi r^2$$ + $$\pi R^2$$$$\Rightarrow$$ 25.8$$cm^2$$

    Larger circle area = $$\pi$$R$$^2$$ $$\Rightarrow$$ 12.5 cm$$^2$$

    Smaller circle area = $$\pi$$r$$^2$$ $$\Rightarrow$$ ?

    Therefore,
    SA = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    25.8 = 2.34 +Area of smaller circle + 12.5

    $$25.8 - 2.34 - 12.5 = $$Area of smaller circle

    Area of smaller circle of a frustum cone = 10.96 cm$$^2$$

  • Question 7
    1 / -0
    A vessel is in the form of a frustum of a cone. Its diameter at top end is 2 m and the bottom end is 0.5 m. Its height is 5 m. Find the volume of the frustum cone. (Use $$\pi$$ = 3).
    Solution

    Volume of a frustum cone = $$ \displaystyle \frac{\pi h}{3} (R^2 + Rr + r^2)$$

    Diameter = radius $$\times 2$$

    Radius, R = 1 m, r = 0.25 m

    = $$ \displaystyle \frac{3 \times 5}{3} (1^2 + 1 \times 0.25 + {0.25}^2)$$

    = $$5(1 + 0.25 + 0.0625)$$

    = $$5 (1.3125)$$

    = 6.5625 $$m^3$$
  • Question 8
    1 / -0
    Find the curved surface area of a frustum cone whose larger and smaller radius is 20 and 5 cm. The slant height is 10 cm. (Use $$\pi$$ = 3.14) 
    Solution

    Curved surface area of a frustum cone = $$\pi$$(r + R)s $$\Rightarrow$$  ?

    = 3.14 $$\times$$ (5 + 20) $$\times$$ 10

    = 3.14 $$\times$$ (25) $$\times$$ 10

    Curved surface area of a frustum cone = 785 cm$$^2$$

  • Question 9
    1 / -0

    A bucket is in the form of a frustum of a cone. The curved surface area of the bucket is $$120 \pi\ {cm}^2.$$ The top and bottom radius of the bucket is $$8\ cm$$ and $$4\ cm.$$ What is the slant height ?

    Solution
    The curved surface area of a frustum of a cone is given by $$\pi(R+r)l$$ where $$l$$ is the slant height and $$r, R$$ is top and bottom radius.

    So, by using the given information,
    $$\begin{aligned}{}\pi \left( {R + r} \right)l &= 120\pi \\\left( {8 + 4} \right)l &= 120\\12l &= 120\\l &= 10\ cm\end{aligned}$$

    Hence, the slant height of the bucket is $$10\ cm.$$
  • Question 10
    1 / -0
    Find the curved surface area of a frustum cone whose larger and smaller radius is 35 and 10 m. The slant height is 45 m. (Use $$\pi$$ = 3) 
    Solution

    Curved surface area of a frustum cone = $$\pi$$(r + R)s $$\Rightarrow$$ ?

    = 3 $$\times$$ (35 + 10) $$\times$$45

    = 3 $$\times$$ (45) $$\times$$ 45

    Curved surface area of a frustum cone = 6,075 m$$^2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now