Self Studies

Statistics Test - 43

Result Self Studies

Statistics Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the arithmetic mean of the children's height using direct method.

    Solution
    Arithmetic mean using direct method formula is $$\bar { x } = \dfrac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } $$
    $$\bar { x } = \dfrac { 1785 }{ 190 } $$
    $$\bar { x } = 9.3947$$
    The average mean height of the children is $$9.39$$ cm.

  • Question 2
    1 / -0
    Find the median for the following data given below$$:-$$
    Class interval
    $$11-21$$
    $$21-31$$
    $$31-41$$
    $$41-51$$
    Frequencies
    $$1$$
    $$5$$
    $$7$$
    $$3$$
    Solution
    Class interval 
    Frequencies(f)
    Cumulative frequencies(cf)
    $$11-21$$
    $$1$$
    $$1$$
    $$21-31$$
    $$5$$
    $$1+5=6$$
    $$31-41$$
    $$7$$
    $$6+7=13$$
    $$41-51$$
    $$3$$
    $$13+3=16$$

    $$n=\Sigma f=16$$
    $$\displaystyle\frac{n}{2}=\frac{16}{2}=8$$

    Median $$=l+\left(\displaystyle\frac{\frac{n}{2}-cf}{f}\right)\times h$$
    L$$=$$ Lower limit of the median class $$=31$$
    $$n=\Sigma f=$$ Total number of frequency $$=16$$
    $$\displaystyle\frac{n}{2}=\frac{16}{2}=8$$
    So, the median class is $$31-41$$
    cf$$=$$ Cumulative frequency of the class preceding the median class $$=6$$
    f$$=$$ Frequency of the median class $$=7$$
    h$$=$$ class width$$=10$$
    Therefore, Median $$=l+\left(\displaystyle\frac{\frac{n}{2}-cf}{f}\right)\times h$$
    $$=31+\left(\displaystyle\frac{\frac{16}{2}-6}{7}\right)\times 10$$
    $$=31+\left(\displaystyle\frac{8-6}{7}\right)\times 10$$
    $$=31+4.28$$
    $$=35.28$$
    Hence, the median is $$35.28$$
  • Question 3
    1 / -0
    Calculate the median for the following data given below$$:$$
    X
    $$8-10$$
    $$10-12$$
    $$12-14$$
    $$14-16$$
    F
    $$4$$
    $$8$$
    $$12$$
    $$16$$

    Solution

                Frequencies (f)
            Cumulative frequency (cf)
    $$8-10$$
                    $$4$$
                    $$4$$
    $$10-12$$
                   $$8$$
                  $$4+8=12$$

    $$12-14$$           
                   $$12$$
                 $$12+12=24$$
    $$14-16$$ 
                  $$16$$
                 $$24+16=40$$




    Here,
    $$n=\Sigma f=$$ Total frequency $$=4+8+12+16=40$$
    $$\displaystyle\frac{n}{2}=\frac{40}{2}=20$$
    $$20^{th}$$ observation lies between cumulative frequencies $$12$$ and $$24$$
    So, the median class is $$12-14$$

    We know, Median $$=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h$$
    $$l=$$ Lower limit of the median class $$=12$$
    $$cf=$$ Cumulative frequency of the class preceding the median class $$=12$$
    $$f=$$ Frequency of the median class $$=12$$
    $$h=$$ class width$$=14-12=2$$

    Therefore, 
    Median $$=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h$$
                  $$=12+\left(\displaystyle\frac{\displaystyle\frac{40}{2}-12}{12}\right)\times 2$$
                  $$=12+\left(\displaystyle\frac{20-12}{12}\right)\times 2$$
                  $$=12+1.333$$
                  $$=13.33$$

    Hence, the median is $$13.33$$.
  • Question 4
    1 / -0
    Calculate the median for the following data given below$$:$$
    X
    $$5-9$$
    $$9-13$$
    $$13-17$$
    $$17-21$$
    F
    $$3$$
    $$8$$
    $$9$$
    $$4$$
    Solution
    X
    Frequencies (f)
    Cumulative frequency (cf)
    $$5-9$$
    $$3$$
    $$3$$
    $$9-13$$
    $$8$$
    $$3+8=11$$
    $$13-17$$
    $$9$$
    $$11+9=20$$
    $$17-21$$
    $$4$$
    $$20+4=24$$

    $$n=\Sigma f=24$$
    $$\displaystyle\frac{n}{2}=\frac{24}{2}=12$$

    Median $$=l+\left(\displaystyle\frac{\frac{n}{2}-cf}{f}\right)\times h$$
    $$n=\Sigma f=$$ Total number of frequency $$=12$$
    $$\displaystyle\frac{n}{2}=\frac{24}{2}=12$$
    So, the median class is $$13-17$$
    L$$=$$ Lower limit of the median class $$=13$$
    cf$$=$$ Cumulative frequency of the class preceding the median class $$=11$$
    f$$=$$ Frequency of the median class $$=9$$
    h$$=$$ class width$$=4$$
    Therefore, Median $$=l+\left(\displaystyle\frac{\frac{n}{2}-cf}{f}\right)\times h$$
    $$=13+\left(\displaystyle\frac{\frac{24}{2}-11}{9}\right)\times 4$$
    $$=13+\left(\displaystyle\frac{12-11}{9}\right)\times 4$$
    $$=13+0.44$$
    $$=13.44$$
    Hence, the median is $$13.44$$.
  • Question 5
    1 / -0
    Estimate the median for the following data given below$$:$$
    Marks
    $$50-55$$
    $$55-60$$
    $$60-65$$
    $$65-70$$
    $$70-75$$
    Students
    $$50$$
    $$40$$
    $$30$$
    $$20$$
    $$10$$
    Solution
    Marks              
             Students (f)                 
    Cumulative frequency (cf)
    $$50-55$$
             $$50$$                    
    $$50$$
    $$55-60$$
             $$40$$
    $$50+40=90$$
    $$60-65$$
             $$30$$
    $$90+30=120$$
    $$65-70$$
             $$20$$
    $$120+20=140$$
    $$70-75$$  
             $$10$$
    $$140+10=150$$



    Median $$=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h$$
    $$n=\Sigma f=$$ Total number of frequency $$=150$$
    $$\displaystyle\frac{n}{2}=\frac{150}{2}=75$$
    So, the median class is $$55-60$$
    L$$=$$ Lower limit of the median class $$=55$$
    cf$$=$$ Cumulative frequency of the class preceding the median class $$=50$$
    f$$=$$ Frequency of the median class $$=40$$
    h$$=$$ class width$$=5$$
    Therefore, Median $$=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h$$
    $$=55+\left(\displaystyle\frac{\displaystyle\frac{150}{2}-50}{40}\right)\times 5$$
    $$=55+\left(\displaystyle\frac{75-50}{40}\right)\times 5$$
    $$=55+\dfrac{25}{8}$$
    $$=58.125$$
    Hence, the median is $$58.125$$.
  • Question 6
    1 / -0
    Find the median for the following data given below$$:$$
    X  
    $$0-5$$
    $$5-10$$
    $$10-15$$
    $$15-20$$
    $$20-25$$

        $$4$$.  
        $$8$$
        $$12$$
        $$16$$
       $$20$$
  • Question 7
    1 / -0
    Calculate the median for the following data given below$$:$$
    Scores
    $$12-15$$
    $$15-18$$
    $$18-21$$
    $$21-24$$
    Frequency
    $$10$$
    $$20$$
    $$30$$
    $$40$$

  • Question 8
    1 / -0
    Find the median for the following data given below:
    Class interval
    $$0-2$$
    $$2-4$$
    $$4-6$$
    $$6-8$$
    Frequencies
    $$2$$
    $$3$$
    $$5$$
    $$7$$
    Solution
     Class Interval Frequency(f) Cumulative Frequency (cf)
     0-2 2
     2-4 3 5
     4-6 5 10
     6-8 7 17
      $$n=\Sigma f=17$$ 

    Here, $$\displaystyle\frac{n}{2}=\frac{17}{2}=8.5$$ 

    Hence, the median class is $$4-6$$
    We know that,
    Median $$=l+\left(\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h$$
    Where, $$l\rightarrow$$ lower limit of the median class $$=4$$
    $$n=\Sigma f\rightarrow$$ total number of frequency $$=17$$
    $$cf\rightarrow$$ cumulative frequency of the class preceding the median class $$=5$$
    $$f\rightarrow$$ frequency of the median class$$=5$$
    $$h\rightarrow$$ class width $$=2$$
    Therefore, Median $$=4+\left(\displaystyle\frac{\frac{17}{2}-5}{5}\right)\times 2$$
    $$\Rightarrow 4+\left(\displaystyle\frac{17-10}{2\times 5}\right)\times 2$$
    $$\Rightarrow 4+1.4$$
    $$\Rightarrow 5.4$$
    Hence, the median for the given data is $$5.4$$
  • Question 9
    1 / -0
    Find the median for the following data given below$$:-$$
    X
    $$4-7$$
    $$7-10$$
    $$10-13$$
    $$13-14$$
    F
    $$2$$
    $$5$$
    $$3$$
    $$2$$

    Solution
    X
    F(f)
    Cumulative frequency (cf)
    $$4-7$$
    $$2$$
    $$2$$
    $$7-10$$
    $$5$$
    $$2+5=7$$
    $$10-13$$
    $$3$$
    $$7+3=10$$
    $$13-14$$
    $$2$$
    $$10+2=12$$

    $$n=\Sigma f=12$$
    $$\dfrac{n}{2}$$$$=\dfrac{12}{2}=6$$

    Median $$=l+\left(\displaystyle\frac{\frac{n}{2}-cf}{f}\right)\times h$$
    $$n=\Sigma f=$$ total number of frequency $$=12$$
    $$\displaystyle\frac{n}{2}=\frac{12}{2}=6$$

    So, the median class is $$10-13$$
    $$L=$$ Lower limit of median class $$=10$$
    $$cf=$$ Cumulative frequency of the class preceding the median class $$=7$$
    $$f=$$ frequency of the median class $$=3$$
    $$h=$$ class width $$=3$$
    Therefore, Median $$=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h$$
    $$=10+\left(\displaystyle\frac{\displaystyle\frac{12}{2}-7}{3}\right)\times 3$$
    $$=10+\left(\displaystyle\frac{6-7}{3}\right)\times 3$$
    $$=10-1$$
    $$=9$$
    Hence, the median is $$9$$ 
  • Question 10
    1 / -0
    The marks obtained by $$20$$ students in maths are $$35,  40,  78,  30,  50,  78,  36,  65,  78,  40,  30,  65,  50,  35,  80,  95,  80,  36,  95,  35$$. Find the Arithmetic mean of the students by direct method.
    Solution
    Arranging in ascending order
    $$30, 30, 35, 35, 35, 36, 36, 40, 40, 50, 50, 65, 65, 78, 78, 78, 80, 80, 95, 95$$.

    $$X_i$$ $$F_i$$ $$X_i F_i$$ 
    30 60 
    35 3 105
     36 2 72
     40 280
     50 100
     65 2 130
     78 3 156
     80 2160 
     95 2190 
     $$\Sigma F_i = 20$$ $$\Sigma F_i X_i=1131$$ 
    Mean = $$\cfrac{\Sigma F_i X_i}{\Sigma F_i} = \cfrac{1131}{20} = 56.55 \simeq 56.85$$
    C) 56.85
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now