Self Studies

Statistics Test - 43

Result Self Studies

Statistics Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the arithmetic mean of the children's height using direct method.

    Solution
    Arithmetic mean using direct method formula is xˉ=fixi fi \bar { x } = \dfrac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  }
    xˉ=1785190\bar { x } = \dfrac { 1785 }{ 190 }
    xˉ=9.3947\bar { x } = 9.3947
    The average mean height of the children is 9.399.39 cm.

  • Question 2
    1 / -0
    Find the median for the following data given below::-
    Class interval
    112111-21
    213121-31
    314131-41
    415141-51
    Frequencies
    11
    55
    77
    33
    Solution
    Class interval 
    Frequencies(f)
    Cumulative frequencies(cf)
    112111-21
    11
    11
    213121-31
    55
    1+5=61+5=6
    314131-41
    77
    6+7=136+7=13
    415141-51
    33
    13+3=1613+3=16

    n=Σf=16n=\Sigma f=16
    n2=162=8\displaystyle\frac{n}{2}=\frac{16}{2}=8

    Median =l+(n2cff)×h=l+\left(\displaystyle\frac{\frac{n}{2}-cf}{f}\right)\times h
    L== Lower limit of the median class =31=31
    n=Σf=n=\Sigma f= Total number of frequency =16=16
    n2=162=8\displaystyle\frac{n}{2}=\frac{16}{2}=8
    So, the median class is 314131-41
    cf== Cumulative frequency of the class preceding the median class =6=6
    f== Frequency of the median class =7=7
    h== class width=10=10
    Therefore, Median =l+(n2cff)×h=l+\left(\displaystyle\frac{\frac{n}{2}-cf}{f}\right)\times h
    =31+(16267)×10=31+\left(\displaystyle\frac{\frac{16}{2}-6}{7}\right)\times 10
    =31+(867)×10=31+\left(\displaystyle\frac{8-6}{7}\right)\times 10
    =31+4.28=31+4.28
    =35.28=35.28
    Hence, the median is 35.2835.28
  • Question 3
    1 / -0
    Calculate the median for the following data given below::
    X
    8108-10
    101210-12
    121412-14
    141614-16
    F
    44
    88
    1212
    1616

    Solution

                Frequencies (f)
            Cumulative frequency (cf)
    8108-10
                    44
                    44
    101210-12
                   88
                  4+8=124+8=12

    121412-14           
                   1212
                 12+12=2412+12=24
    141614-16 
                  1616
                 24+16=4024+16=40




    Here,
    n=Σf=n=\Sigma f= Total frequency =4+8+12+16=40=4+8+12+16=40
    n2=402=20\displaystyle\frac{n}{2}=\frac{40}{2}=20
    20th20^{th} observation lies between cumulative frequencies 1212 and 2424
    So, the median class is 121412-14

    We know, Median =l+(n2cff)×h=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h
    l=l= Lower limit of the median class =12=12
    cf=cf= Cumulative frequency of the class preceding the median class =12=12
    f=f= Frequency of the median class =12=12
    h=h= class width=1412=2=14-12=2

    Therefore, 
    Median =l+(n2cff)×h=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h
                  =12+(4021212)×2=12+\left(\displaystyle\frac{\displaystyle\frac{40}{2}-12}{12}\right)\times 2
                  =12+(201212)×2=12+\left(\displaystyle\frac{20-12}{12}\right)\times 2
                  =12+1.333=12+1.333
                  =13.33=13.33

    Hence, the median is 13.3313.33.
  • Question 4
    1 / -0
    Calculate the median for the following data given below::
    X
    595-9
    9139-13
    131713-17
    172117-21
    F
    33
    88
    99
    44
    Solution
    X
    Frequencies (f)
    Cumulative frequency (cf)
    595-9
    33
    33
    9139-13
    88
    3+8=113+8=11
    131713-17
    99
    11+9=2011+9=20
    172117-21
    44
    20+4=2420+4=24

    n=Σf=24n=\Sigma f=24
    n2=242=12\displaystyle\frac{n}{2}=\frac{24}{2}=12

    Median =l+(n2cff)×h=l+\left(\displaystyle\frac{\frac{n}{2}-cf}{f}\right)\times h
    n=Σf=n=\Sigma f= Total number of frequency =12=12
    n2=242=12\displaystyle\frac{n}{2}=\frac{24}{2}=12
    So, the median class is 131713-17
    L== Lower limit of the median class =13=13
    cf== Cumulative frequency of the class preceding the median class =11=11
    f== Frequency of the median class =9=9
    h== class width=4=4
    Therefore, Median =l+(n2cff)×h=l+\left(\displaystyle\frac{\frac{n}{2}-cf}{f}\right)\times h
    =13+(242119)×4=13+\left(\displaystyle\frac{\frac{24}{2}-11}{9}\right)\times 4
    =13+(12119)×4=13+\left(\displaystyle\frac{12-11}{9}\right)\times 4
    =13+0.44=13+0.44
    =13.44=13.44
    Hence, the median is 13.4413.44.
  • Question 5
    1 / -0
    Estimate the median for the following data given below::
    Marks
    505550-55
    556055-60
    606560-65
    657065-70
    707570-75
    Students
    5050
    4040
    3030
    2020
    1010
    Solution
    Marks              
             Students (f)                 
    Cumulative frequency (cf)
    505550-55
             5050                    
    5050
    556055-60
             4040
    50+40=9050+40=90
    606560-65
             3030
    90+30=12090+30=120
    657065-70
             2020
    120+20=140120+20=140
    707570-75  
             1010
    140+10=150140+10=150



    Median =l+(n2cff)×h=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h
    n=Σf=n=\Sigma f= Total number of frequency =150=150
    n2=1502=75\displaystyle\frac{n}{2}=\frac{150}{2}=75
    So, the median class is 556055-60
    L== Lower limit of the median class =55=55
    cf== Cumulative frequency of the class preceding the median class =50=50
    f== Frequency of the median class =40=40
    h== class width=5=5
    Therefore, Median =l+(n2cff)×h=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h
    =55+(15025040)×5=55+\left(\displaystyle\frac{\displaystyle\frac{150}{2}-50}{40}\right)\times 5
    =55+(755040)×5=55+\left(\displaystyle\frac{75-50}{40}\right)\times 5
    =55+258=55+\dfrac{25}{8}
    =58.125=58.125
    Hence, the median is 58.12558.125.
  • Question 6
    1 / -0
    Find the median for the following data given below::
    X  
    050-5
    5105-10
    101510-15
    152015-20
    202520-25

        44.  
        88
        1212
        1616
       2020
  • Question 7
    1 / -0
    Calculate the median for the following data given below::
    Scores
    121512-15
    151815-18
    182118-21
    212421-24
    Frequency
    1010
    2020
    3030
    4040

  • Question 8
    1 / -0
    Find the median for the following data given below:
    Class interval
    020-2
    242-4
    464-6
    686-8
    Frequencies
    22
    33
    55
    77
    Solution
     Class Interval Frequency(f) Cumulative Frequency (cf)
     0-2 2
     2-4 3 5
     4-6 5 10
     6-8 7 17
      n=Σf=17n=\Sigma f=17 

    Here, n2=172=8.5\displaystyle\frac{n}{2}=\frac{17}{2}=8.5 

    Hence, the median class is 464-6
    We know that,
    Median =l+(n2cff)×h=l+\left(\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h
    Where, ll\rightarrow lower limit of the median class =4=4
    n=Σfn=\Sigma f\rightarrow total number of frequency =17=17
    cfcf\rightarrow cumulative frequency of the class preceding the median class =5=5
    ff\rightarrow frequency of the median class=5=5
    hh\rightarrow class width =2=2
    Therefore, Median =4+(17255)×2=4+\left(\displaystyle\frac{\frac{17}{2}-5}{5}\right)\times 2
    4+(17102×5)×2\Rightarrow 4+\left(\displaystyle\frac{17-10}{2\times 5}\right)\times 2
    4+1.4\Rightarrow 4+1.4
    5.4\Rightarrow 5.4
    Hence, the median for the given data is 5.45.4
  • Question 9
    1 / -0
    Find the median for the following data given below::-
    X
    474-7
    7107-10
    101310-13
    131413-14
    F
    22
    55
    33
    22

    Solution
    X
    F(f)
    Cumulative frequency (cf)
    474-7
    22
    22
    7107-10
    55
    2+5=72+5=7
    101310-13
    33
    7+3=107+3=10
    131413-14
    22
    10+2=1210+2=12

    n=Σf=12n=\Sigma f=12
    n2\dfrac{n}{2}=122=6=\dfrac{12}{2}=6

    Median =l+(n2cff)×h=l+\left(\displaystyle\frac{\frac{n}{2}-cf}{f}\right)\times h
    n=Σf=n=\Sigma f= total number of frequency =12=12
    n2=122=6\displaystyle\frac{n}{2}=\frac{12}{2}=6

    So, the median class is 101310-13
    L=L= Lower limit of median class =10=10
    cf=cf= Cumulative frequency of the class preceding the median class =7=7
    f=f= frequency of the median class =3=3
    h=h= class width =3=3
    Therefore, Median =l+(n2cff)×h=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h
    =10+(12273)×3=10+\left(\displaystyle\frac{\displaystyle\frac{12}{2}-7}{3}\right)\times 3
    =10+(673)×3=10+\left(\displaystyle\frac{6-7}{3}\right)\times 3
    =101=10-1
    =9=9
    Hence, the median is 99 
  • Question 10
    1 / -0
    The marks obtained by 2020 students in maths are 35, 40, 78, 30, 50, 78, 36, 65, 78, 40, 30, 65, 50, 35, 80, 95, 80, 36, 95, 3535,  40,  78,  30,  50,  78,  36,  65,  78,  40,  30,  65,  50,  35,  80,  95,  80,  36,  95,  35. Find the Arithmetic mean of the students by direct method.
    Solution
    Arranging in ascending order
    30,30,35,35,35,36,36,40,40,50,50,65,65,78,78,78,80,80,95,9530, 30, 35, 35, 35, 36, 36, 40, 40, 50, 50, 65, 65, 78, 78, 78, 80, 80, 95, 95.

    XiX_i FiF_i XiFiX_i F_i 
    30 60 
    35 3 105
     36 2 72
     40 280
     50 100
     65 2 130
     78 3 156
     80 2160 
     95 2190 
     ΣFi=20\Sigma F_i = 20 ΣFiXi=1131\Sigma F_i X_i=1131 
    Mean = ΣFiXiΣFi=113120=56.5556.85\cfrac{\Sigma F_i X_i}{\Sigma F_i} = \cfrac{1131}{20} = 56.55 \simeq 56.85
    C) 56.85
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now