Given that,
$$a,\ b$$ are distinct real roots of the quadratic polynomial $$x^2+20x-2020$$.
$$c,\ d$$ are distinct complex roots of the quadratic polynomial $$x^2-20x+2020$$.
To find out,
The value of $$ac(a-c)+ad(a-d)+bc(b-c)+bd(b-d)$$
We know that, for a quadratic polynomial of the form $$ax^2+bx+c$$,
Sum of roots $$=\dfrac{-\text{ Coefficient of }x}{\text{Coefficient of }x^2}=\dfrac{-b}{a}$$,
And product of roots $$=\dfrac{\text{ Constant term}}{\text{Coefficient of }x^2}=\dfrac{c}{a}$$
Hence, for the first quadratic polynomial, $$x^2+20x-2020$$,
$$a+b=-20\quad \quad \ \ \ \ \ \ \ ....(1)$$
And $$ab=-2020\quad \quad ....(2)$$
And, for the first quadratic polynomial, $$x^2-20x+2020$$,
$$c+d=20\quad \quad \ \ \ \ \ \ \ \ ....(3)$$
And $$cd=2020\quad \quad \ ....(4)$$
Now, simplifying the expression $$ac(a-c)+ad(a-d)+bc(b-c)+bd(b-d)$$ by multiplying and combing terms that make the sum and product of the roots of the given polynomials.
$$ac(a-c)+ad(a-d)+bc(b-c)+bd(b-d)$$
$$\Rightarrow a^2c-ac^2+a^2d-ad^2+b^2c-bc^2+b^2d-bd^2$$
$$\Rightarrow a^2c+a^2d+b^2c+b^2d-ac^2-ad^2-bc^2-bd^2$$
$$\Rightarrow a^2(c+d)+b^2(c+d)-[a(c^2+d^2)+b(c^2+d^2)]$$
$$\Rightarrow (a^2+b^2)(c+d)-[(c^2+d^2)(a+b)]$$
We know that, $$(a+b)^2=a^2+b^2+2ab$$
Hence, $$a^2+b^2=(a+b)^2-2ab$$
Using the above relation, we get:
$$ \{(a+b)^2-2ab\}(c+d)-[\{(c+d)^2-2cd\}(a+b)]$$
Substituting the values of $$(a+b),\ ab,\ (c+d)$$ and $$CD$$ from $$(1),\ (2),\ (3)$$ and $$(4)$$, we get:
$$\{(-20)^2-2(-2020)\}(20)-[\{(20)^2-2(2020)\}(-20)]$$
$$\Rightarrow \{400+4040\}(20)-[\{400-4040\}(-20)]$$
$$\Rightarrow \{4440\}(20)-[\{-3640\}(-20)]$$
$$\Rightarrow 88800-72800$$
Hence, $$ac(a-c)+ad(a-d)+bc(b-c)+bd(b-d)=16000$$.