Self Studies
Selfstudy
Selfstudy

Polynomials Test - 34

Result Self Studies

Polynomials Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The zeroes of an expression represented by the

    following graph are:




  • Question 2
    1 / -0
    The zero polynomial has :
    Solution
    Zeroes of the polynomial mean to find those values of $$x$$ for which the value of the polynomial becomes zero.
    i.e. $$p(x)=0$$
    Now, we have a zero polynomial $$p(x)=0$$.
    This is the zero polynomial and will be true for all values of x belonging to complex numbers.
    Hence, infinite no. of solutions.
  • Question 3
    1 / -0
    If $$\alpha, \beta$$ are real and $$\alpha^2, -\beta^2$$ are the roots of $$a^2 x^2 + x+1-a^2=0;\ (a  >  1)$$, then $$\beta^2=$$
    Solution
    $$\alpha^2, -\beta^2$$ are the roots of $$a^2x^2+x+1-a^2=0$$
    $$\Rightarrow \alpha^2 - \beta^2=\displaystyle -\frac{1}{a^2},$$ 
    And
    $$\Rightarrow\alpha^2 (-\beta^2)=\dfrac{1-a^2}{a^2}$$

    $$(\alpha^2 + \beta^2)^2 = (\alpha^2 - \beta^2)^2 + 4\alpha^2 \beta^2$$

    $$=\displaystyle \frac{1}{a^4}+4 \left ( \frac{a^2-1}{a^2} \right ) = \frac{1}{a^4}+ 4 - \frac{4}{a^2}$$

    $$=\displaystyle \left ( 2- \frac{1}{a^2} \right )^2  \Rightarrow \alpha^2 + \beta^2 =2 - \frac{1}{a^2}$$

    $$\beta^2 = \displaystyle \frac{1}{2} \left [ (\alpha^2 + \beta^2) - (\alpha^2 - \beta^2) \right ]$$

    $$=\displaystyle \frac{1}{2}\left [ 2 - \frac{1}{a^2} + \frac{1}{a^2} \right ] =1$$
  • Question 4
    1 / -0
    If the zeros of the polynomial $$f(x)=k^2x^2-17x+k+2, (k > 0)$$ are reciprocal of each other, then the value of $$k$$ is
    Solution

    We know that  the product of roots of equation $$ax^{2}+bx+c=0$$ is equal to $$\dfrac{c}{a}$$

    Let $$\alpha, \dfrac {1}{\alpha}$$ are the roots of $$k^2x^2-17x+(k+2)$$

    $$\alpha \times \dfrac {1}{\alpha}=\dfrac {k+2}{k^2}$$

    $$\Rightarrow k^2=k+2$$

    $$\Rightarrow k^2-k-2=0$$

    $$\Rightarrow (k-2)(k+1)=0$$

    $$\Rightarrow k=2$$ and $$k=-1$$

    But $$k > 0$$  $$\therefore k=2$$
  • Question 5
    1 / -0
    If the roots of $$x^2 - bx + c = 0$$ are each decreased by $$2$$, then resulting equation is $$x^2 - 2x + 1 = 0$$, if and only if
    Solution

    We know that equation $$ax^{2}+bx+c=0$$

    Then sum of roots $$=\dfrac{-b}{a}$$ and product of roots$$=\dfrac{c}{a}$$ 

    For the 1st equation, 
    Let the roots be $$\alpha$$ and $$\beta$$
    $$\alpha +\beta =b$$ and $$\alpha \beta =c$$      ...(1)

    As per the given condition,
    $$ (\alpha -2 +\beta -2 )=2$$      ...(2)
    $$\therefore \alpha + \beta = 6$$
    $$\therefore b= 6$$                 ...from (1) & (2)


    Also, $$ (\alpha-2)(\beta-2) = 1$$       ...(3)
    $$\therefore \alpha \beta-2(\alpha +\beta) +4=1$$
    $$\therefore c -2(6) = -3$$
    $$\therefore c = 9$$
  • Question 6
    1 / -0
    If the roots of the given equation $$2x^2+3(\lambda -2)x+\lambda +4=0$$ be equal in magnitude but opposite in sign, then value of $$\lambda$$ is
    Solution
    Given equation is $$2x^2+3(\lambda -2)x+\lambda +4=0$$

    We know that equation $$ax^{2}+bx+c=0$$

    Then sum of roots $$=\dfrac{-b}{a}$$

    Let $$\alpha$$, $$\beta$$ be the roots of the given equation
    $$\therefore \alpha+\beta=-\dfrac{3(\lambda-2)}{2}$$
    But it is given that
    $$\alpha=-\beta$$
    Therefore, $$ -\beta+\beta=-\dfrac{3(\lambda-2)}{2}$$
                                 
                                  $$ 0=-\dfrac{3(\lambda-2)}{2}$$
             
                           $$ 0\times 2=-{3(\lambda-2)}$$

                             $$ \dfrac{0}{-3}=(\lambda-2)$$

                                 $$ 0=(\lambda-2)$$
                         $$\lambda-2=0$$
                 Hence, $$\therefore \lambda=2$$
  • Question 7
    1 / -0
    If $$\alpha, \beta, \gamma $$ are the roots of the equation $$2x^3-3x^2+6x+1=0$$, then $$\alpha^2 +\beta^2+ \gamma^2$$ is equal to
    Solution
    Given equation $$2x^3 - 3x^2 + 6x + 1 = 0$$,
    Sum of roots: 
    $$\alpha +\beta +\gamma =\dfrac{-b}{a}$$
    So, $$\alpha +\beta +\gamma =\dfrac{3}{2}$$,
    Product of roots: 
    $$\alpha \beta \gamma =\dfrac{-d}{a}$$
    $$\alpha \beta \gamma =\dfrac{-1}{2}$$,
    Sum of products taken $$2$$ at a time: 
    $$\Sigma  \alpha \beta =\alpha\beta+\beta\gamma+\alpha\gamma=\dfrac{c}{a}$$
    $$\alpha \beta +\beta\gamma+\alpha\gamma=\dfrac62 =3$$

    Now, we know that
    $$(\alpha+\beta+\gamma)^2 = \alpha^2+\beta^2+\gamma^2 + 2(\alpha\beta+\beta\gamma+\gamma\alpha)$$

    Re-arranging, we get
    $$\alpha^2 +\beta^2+ \gamma^2 =(\alpha +\beta+ \gamma)^2-2(\Sigma \alpha \beta )$$
    $$\alpha^2+\beta^2+\gamma^2 = \left(\dfrac{3}{2} \right)^2-2\times3$$
    $$=\dfrac{9}{4}-6$$
    $$=-\dfrac{15}{4}$$

    Hence, option A.
  • Question 8
    1 / -0
    If $$'k'$$ be the ratio of the roots of the equation $$x^{2} - px +q = 0$$, the value of $$\dfrac{k}{1 + k^{2}}$$ is
    Solution

    We know that equation $$ax^{2}+bx+c=0$$

    Then sum of roots $$=\dfrac{-b}{a}$$

    Let the roots of the equation be a and b.
    Then, $$a + b = p$$
    $$ab = q$$

    $$\dfrac{a}{b} = k$$
    Now, $$\dfrac{k}{1+k^2}$$
    $$ = \dfrac{\dfrac{a}{b}}{1+ (\dfrac{a}{b})^2}$$
    $$= \dfrac{ab}{a^2+b^2}$$
    $$= \dfrac{ab}{(a+b)^2 - 2ab}$$
    $$= \dfrac{q}{p^2 - 2q}$$
  • Question 9
    1 / -0
    If $$\alpha, \beta$$ be the zeros of the quadratic polynomial $$2x^2+5x+1$$, then the value of $$\alpha+\beta+\alpha \beta=$$
    Solution

    We know that equation $$ax^{2}+bx+c=0$$

    Then sum of roots $$=\dfrac{-b}{a}$$ and product of roots$$=\dfrac{c}{a}$$

    Let $$\alpha  ,\beta $$ are the zeros of the quadratic equation.

    Therefore,
    $$\displaystyle \alpha +\beta =-\dfrac { 5 }{ 2 }$$ and $$\alpha \beta =\dfrac { 1 }{ 2 }$$ 
    Now, 
    $$\displaystyle\alpha +\beta +\alpha \beta = -\dfrac { 5 }{ 2 } +\dfrac { 1 }{ 2 } $$

    $$ = \dfrac { -4 }{ 2 } $$

    $$ =-2$$
  • Question 10
    1 / -0
    Quadratic polynomial having sum of it's zeros is 5 and product of it's zeros is - 14 is
    Solution
    If $$\alpha$$ $$\beta$$  be the zeros of the quadratic polynomial,
    as given sum of it's zeros $$5$$ and product of it's zeros $$- 14$$ 
    then $$\alpha + \beta =5$$ and $$\alpha \beta =-14$$

    $$\left( x-\alpha  \right) \left( x-\beta  \right)$$ is the quadratic polynomial.
    $$=>{ x }^{ 2 }-2x-\beta x+\alpha \beta $$
    $$=>{ x }^{ 2 }-\left( \alpha +\beta  \right) x+\alpha \beta $$
    $$=>{ x }^{ 2 }-5x+\left( -14 \right) $$
    $$=>{ x }^{ 2 }-5x-14$$
    Therefore quadratic polynomial is
    $$ { x }^{ 2 }-5x-14 $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now